
  

 

Abstract—To improve contour tracking performance for 

multi-axis precision motion systems, a position domain iteration 

learning control (PDILC) is presented in this paper. Traditional 

control approaches design controllers in time domain 

individually, thus suffer from poor synchronization of relevant 

motion axes and result in restriction for contour tracking tasks. 

Our approach is to combine the positon domain method with 

the ILC to reduce the contour errors and individual axis 

simultaneously for repetitive tasks. Stability and convergence 

analysis of the proposed method are conducted through lifted 

system representation method. Performance of the PDILC, 

traditional time domain ILC (TDILC) and feedback control 

lonely are evaluated and compared through numerical 

simulations and experimental testing based on a multi-axis 

precise positioning stage. The proposed method enhances the 

precision contour tracking performance of the testbed. 

I. INTRODUCTION 

In multi-axis motion systems, motion precision depends on 
both individual axis tracking and contouring accuracy. 
Traditionally, a decoupled multi-input multi-output (MIMO) 
system is handled as multi single-input single-output (SISO) 
systems. The tracking performance is improved by applying 
feedback and feedforward control into each axis individually. 
A great deal of efforts, such as PID control [1], robust control 
[2], sliding-mode control [3], iterative learning control [4], 
repetitive control [5], [6], and polynomial-based pole 
placement control [7], have been investigated.  

However, a good tracking performance for each individual 
axis does not guarantee the reduction of contour errors for a 
multi-axis motion system, as poor synchronization of relevant 
motion axes may result in diminished accuracy of the contour 
tracking performance [8]. To decrease contour errors, 
cross-coupling control (CCC) was developed by Koren [9]. 
The CCC utilizes coupling gains to couple the individual axis 
errors of SISO systems together and applies a controller to the 
combined signal. The variable-gain CCC was proposed by 
Koren and Lo for nonlinear contour tracking by applying 
circular contour approximation for arbitrary contour 
applications [10], [11]. Yeh and Hsu developed a modified 
variable-gain CCC based on the contour error vector in [12]. It 
should be mentioned that, CCC leaves the tracking 
performance unchanged while improving contour error [13]. 
Barton combined cross-coupled iterative learning control 
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(CCILC) with individual axis ILC to improve both individual 
axis and contour tracking performance [14]-[16]. Being 
different from the aforementioned controllers designed in time 
domain, Ouyang proposed a novel PID feedback controller 
based on the position domain (PDPID) which perceives 
motion system as a master-slave cooperative system to 
guarantee synchronization and improves the contour tracking 
performance [17]. One unique feature of PDPID is that there is 
no tracking error for the master motion, and only tracking 
errors of the slave motions affect the final contour tracking 
errors [18]. The method has been applied on computerized 
numerical control (CNC) and robotic system. 

The main motivation of this paper is to provide a novel 

method to improve contour tracking performance for a 

multi-axis motion system that executes a same task 

repetitively. The CCILC is an effective control method for 

such a system as mentioned before. But the main 

disadvantage of CCILC is the complexity of computation. 
For example, two individual ILC controllers and a CCC 

controller are needed for a biaxial system. The coupling gains 

in traditional CCILC for contours of nonlinear line nor 

non-circle (such as parabolic) are complex to be obtained, 

and the inaccuracy of coupling gain computation may 

influence the tracking performance of CCILC. Our method is 

designing ILC in position domain and generating a position 

domain iteration learning controller (PDILC). The proposed 

PDILC relies less on accurate coupling gains, so an 

estimation vector method can be applied in PDILC design 

and then the PDILC computation process can be simplified. 

The proposed PDILC is advantageous on maintaining 

multi-axis synchronization with reducing individual axis and 

contour errors simultaneously.  

The outline of this paper is as follows. Section II gives a 

brief review of ILC, position domain control (PDC) and 

contour error estimation. In section III, PDILC control law is 

proposed and analyzed. Simulation and experimental results 

and comparison between existing time domain ILC are 

presented in Section IV. Conclusions are given in Section V. 

II. CONTROL DESIGN BACKGROUND 

A.  Iteration Learning Control 

ILC is firstly proposed by Uchiyama in 1978 [19] and 
widely discussed in [20] and so on. It is based on the notion 
that tracking error of a system that executes the same task 
multiple times can be decreased by learning from previous 
iterations [21]. The error information is integrated into the 
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controller and high performance can be achieved despite large 
model uncertainty and repeating external disturbances. 
Considering a discrete LTI and SISO system 

 ( ) ( ) ( ) ( )
j j

k P q u k d ky     (1) 

where k  stands for the time index, j  is the iteration index, 

jy  is the output, 
jy  is the control signal, d  is the exogenous 

signal, ( )P q  is the system transfer function with a time delay 

and q  is the forward time-shift operator ( ) ( 1)qx k x k  . A 

widely used control law of ILC is shown in (2) and the ILC 

system is asymptotically stable (AS) if condition (4) can be 

satisfied [21]. 

 
1
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where Q  is a filter, L  is learning function,
je  is the tracking 

error, 
dy  is the desired output, 


 is the spectral radius of 

the matrix and the bold items stand for lifted system matrix 

representation. 
There are some popular algorithms in designing ILC. The 

PID-type learning function can be applied without accurate 
system model. The plant inversion method can converge 
quickly but relies a lot on modeling accuracy and is quite 

sensitive to model uncertainty. The H  design technique can 

be used to design a robustly convergent ILC but at the expense 
of performance. The PID-type learning function is chosen in 
the following PDILC design as it is tunable with no specific 
need for system model. The discrete-time, PD-type learning 
function can be written as 

 
1
( ) ( ) ( 1) [ ( 1) ( )]

j j p j d j j
u k u k k e k k e k e k


        (5) 

where pk  is the proportional gain and dk  is the derivative 

gain [22].  

B. Position Domain Control 

The position domain control for contour tracking tasks was 
firstly proposed in [23]. A multi-axis motion system is treated 
as a master-slave cooperative motion system. The master 
motion is sampled equidistantly and used as a reference, while 
the slave motions are expressed as functions of the master 
motion according to desired contour requirements [8]. The PD 
type PDC, PID PDC and cross-coupled PID control in 
position domain have been proposed in [8], [24] and [25]. 

For a two DOF decoupled parallel motion system, a 

PD-type feedback control signal ( )yu x  of y-axis (slave 

motion) in position domain is related to x-axis position 

(master motion), which can be expressed as 

 

'

' ' '
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  (6) 

where 
pyK and 

dyK are proportional gain and differential gain, 

ye is y-axis tracking error [8]. It should be noticed that 

position domain PD law uses x-axis position as a reference 

rather than time. Convert (6) to time domain (8) using 

following (7). 

 ( ) ( ) ( )
dy dy dx

y t y x x t
dt dx dt

     (7) 

 ( ) ( ( ) ( )) ( ( ) ( ))
( )

dy

y py d d

K
u t K y t y t y t y t

x t
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From (8), it can be seen that the control force is sensitive to 
the noise under a low speed of the master motion [8]. To solve 
this problem, a modified control law using sampling distance 
of the master motion is shown as (9). 

 ( ) ( ) ( ( ) ( ))
dy

y py y y y

K
u x K e t e t e t t

x
   


  (9) 

The position domain PD control law can be viewed as a 
varying sampling rate PD control in the time domain [8]. It can 
also be viewed as a nonlinear PD control in the time domain 
when the speed of x-axis is not constant [23]. The PID type 
ILC will be chosen in the following sections in PDILC design. 

C. Contour Error Computation and Estimation 

Contour error is defined as the distance between actual 

position and the nearest point in reference trajectory [10]. In 

XY plane contour tracking, contour error ε can be computed 

by (10). 

  - x x y yC e C e     (10) 

where the coupling operators are selected as (11) for a linear 

contour and estimated as (12) for a curved contour [9]. 

 sin , cosx yC C     (11) 

 sin , cos
2 2

yx

x y

ee
C C

R R
       (12) 

For a non-circular contour, an estimation can be made by 

dividing it into parts and regarding them as a part of circle on 

condition that the axis errors are much smaller than the 

instantaneous radius of curvature [10]. This approach needs a 

lot work of computation and is low efficient.  

A modified variable coupling operators based on the 

contouring error vector by applying the linear contour 

approximation was propose in [12]. The geometrical relations 

of biaxial motion systems among the desired contour, actual 

position P and reference position R in a biaxial systems are 

shown in Fig. 1. The estimated contouring error vector  is 

defined as the vector from the actual position to the nearest 

point on the line that passes through the reference position 

tangentially with direction t . The tangential vector t can be 

computed by functional relationship between master motion 

and slave motion. The normalized normal vector n  and the 
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estimated contouring error vector  then can be directly 

derived as 

 
x

y

t
t
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  (13) 
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 ,n e n n       (15) 

where ,   is an inner product operator. The error vector 

method will be adopted in the following sections to estimate 

contour error for non-linear contour tracking case. 
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Figure 1.  Geometrical relations of biaxial motion systems [12] 

I. POSITION DOMAIN ITERATION LEARNING CONTROL 

A. Control Law 

For a linear time invariant (LTI) system with two DOFs, 

the PDILC control signal of mater motion x-axis and slave 

motion y-axis can be given as 
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  (16) 

where j is the iteration index, u is the control signal, Q is a 

filter, L is the learning function. Here, x-axis is chosen as the 

master motion, while y-axis is the slave motion. Applying 

PID type ILC, the y-axis control law can be rewritten as 

 
1 0
( ) ( ) ( ) ( ) ( )

j

s

y y py y iy y dy y
j

u x Q u x K e x K e x dx K e x

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     (17) 

where pyK , iyK and dyK are PID gains for y-axis ILC 

controller. We will mainly discuss stability and performance 
of y-axis in the following steps. 

B. Stability 

 Convert (17) to time domain (18) using (6) and (7). For 

briefness, f   and f in following analysis are short for 

( )f x  and ( )f t , respectively. 
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 
   (18) 

As analyzed in (8) and (9), numerical error of control 

signal may occur when x-axis under a low speed. A modified 

control law using sampling distance of the master motion x  

is shown as 

 
 

0
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
  (19) 

Substituting (19) into (18) yielding, 
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  (20) 

To discuss the asymptotically stable condition of the 
control law in (20), lifted system representation is adopted. 
The lifted system matrix can be formed experimentally by 
applying an impulse input to the system dynamic of (1). The 
linear plant dynamics then can be rewritten as 

 

1

2 1

1 1
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  (21) 

where jY , P , 
jU and d are lifted representation of 

jy , P , 

ju and d with a matrix form, respectively [26]. Equation (20) 

can be rewritten as 

 
1
( ) ( ) ( ) ( )( ( ) ( ))y y du Q I P P u y d

j j

k

y yk k q k k   
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where ( ) ( )kq q qy yP P  , kq stands for time delay with 

discrete step length of ∆k. System is asymptotically stable 

(AS) if there exists appropriate parameters   and    

satisfying  

 ( ( )) 1
y y

Q I P P        (23) 

where the parameter   and  are bounded on condition that 

the trajectory and motion of x-axis are planned appropriate 

with the position increment ∆x bounded. For further analysis 

in computational burden of large matrix manipulations, one 

may refer to [14], [15]. 

C. Performance 

If the AS condition (23) is satisfied, the asymptotic control 
input and steady state error is described in (24). Performance 
is often judged by the decrease from initial error to converged 
error. In simulation and experimental data analysis, the root 
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mean square (RMS) value of error is chosen as evaluation 
index for the proposed algorithm. 
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  (24) 

II. EVALUATION: SIMULATION AND EXPERIMENT CASE 

The proposed PDILC was evaluated through both 
simulation and experiment case based on a three DOF precise 
positioning stage shown in Fig. 2. A triangle trajectory and a 
parabolic trajectory were used to test the algorithm 
effectiveness under linear and nonlinear references displayed 
in Fig. 3. The velocity profiles were planned smoothly to 
avoid numerical error in (18). 

 

Figure 2.  Experiment system 
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Figure 3.  Reference trajectories. (a)Triangle motion. (b)Parabolic motion. 

(c)Triangle axis motion versus time. (d) Parabolic axis motion versus time. 

A.  System Description 

The tested platform shown in Fig. 2 is a serial system. Each 
axis is driven by a DC motor and the position is detected by a 
grating ruler. For this work, only x and y axis were selected for 
simulation and experiment case. Dynamic models of the x and 
y axis were achieved through step response method with a 

sample rate of 1kHz. The continuous transfer functions are 
listed in (25). 

 

5 2

2

2

6.878 0.1402 5.291

5.795 5.564

0.0631 2.132

2.76 2.127

e s s
Gx

s s

s
Gy

s s

  
  


  

  

  (25) 

The proposed PDILC is an open-loop control and has no 
feedback mechanism to reject unexpected, nonrepeating 
disturbances. A PID controller combined with a PDILC 
controller for each axis was designed to perform simulation 
and experiment. The control structure then can be described as 
Fig. 4 shows. 

Iterative 
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Q-filter

Kd P

PID Controller Plant
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Controller 
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Outputj
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dj

+Inputj

ej-1

+

 

Figure 4.  Control structure 

B.  Simulation Results 

Based on the asymptotically stable condition in (23), a set 
of parameter was chosen as listed in Tab. 1 for the feedback 
PDILC controller. The feedback PID gains were determined 
according to system stability and tracking performance in step 
response simulation. It should be noticed that the choice of 
feedback PID gains was not the emphasis in this paper, so the 
gains were set the same for time domain ILC (TDILC) and 
PDILC to make a persuasive comparison between TDILC and 
PDILC control performance. 

TABLE I.  CONTROLLER PARAMETERS 

Axis 
Feedback PID Gains Feedforward PDILC Gains 

Kp Ki Kd Kp Ki Kd 

X 3 1 1 0.3 0.1 0 

Y 3 2 1 0.2 0.05 0 

 

Applying parameters in Tab. 1 and reference trajectory in 
Fig. 3, performance of feedback PID (FB), FB combined with 
TDILC, FB combined with PDILC on the system in (25) were 
evaluated. Simulation results of triangle motion are provided 
in Fig. 5 and Table 2. 
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Figure 5.  RMS contour error 
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Figure 5 shows the RMS contour error of FB combined 
with TDILC and FB combined with PDILC in the iteration 
process. Under the condition of a same set of gain parameters, 
PDILC converges more quickly (less than 40 iterations) and 
results in a lower final RMS value than TDILC (about 160 
iterations). 

TABLE II.  SIMULAITON RESULTS FOR RMS ERRORS 

Controller 
RMS Value (μm) 

X Y ε  

FB 19.28  10.65 5.72 

FB & TDILC 3.43 3.03 1.21 

FB & PDILC 2.14 2.30 1.01 

 

Table 2 lists the RMS values of each axis and the contour 
errors. The PDILC improves the x-axis RMS error by 89%, 
the y-axis RMS error by 78% and the contour RMS error by 
82%, resulting in the best among the three. 

C.  Experimental Results 

To validate the simulation results, the proposed PDILC 
was tested on actual platform in Fig. 2. The NI cRIO 9081 was 
used for implement of controllers. Fig. 6 and Tab. 3 are results 
of triangle motion tracking. Figure 7 and Table 4 display the 
results of parabolic motion tracking. 

Similar to the simulation results, FB & PDILC control 
produces the best tracking performance with an 84% decrease 
in x-axis RMS value, an 88% decrease in y-axis RMS value 
and a 72% decrease in contour RMS value. The improvement 
from TDILC to PDILC in contour RMS is about 6%. Besides, 
the convergence process of PDILC is more quickly (less than 
50 iterations) than TDILC (about 180 iterations) as expected 
in simulation case. The increase in experimental error results 
is to be expected as the existence of unmodelled dynamics in 
the actual environment.  
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Figure 6.  Experimental results of triangle contour tracking. (a) Tracking in 

xy plane. (b) RMS contour error in iteration process 

TABLE III.  EXPERIMENT RESULTS OF TRIANGLE MOTION 

Controller 
RMS Value (μm) 

X Y ε  

FB 18.51 9.93 7.05 

FB & TDILC 4.80 2.28 2.40 

FB & PDILC 2.94 1.15 1.98 

 

Figure 7 shows experiment results of each individual axis 
tracking performance. Errors under FB & PDILC are smallest 
and smoothest versus time compared with FB and FB & 
TDILC control. The x-axis and y-axis under FB & PDILC get 
a 10% improvement and an 11% improvement in RMS value 
from TDILC to PDILC. 

From the control law in (18) and (20), it can be found that 
the decoupled two axis are coupled through introducing the 
velocity of x-axis into y-axis control. The coupling control law 
results in the improvement of contour error and individual 
tracking performance as the experiment results show. 
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Figure 7.  Experimental results of triangle axis tracking. (a) X-axis Tracking 

versus time. (b) Y-axis Tracking versus time. (c) X-aixs error versus time. (d) 

Y-aixs error versus time. 

To evaluate the control law in nonlinear contour tracking 
case, a parabolic contour tracking experiment was conducted. 
The difficulty in nonlinear contour tracking lies in contour 
error estimation as the coupling operators in (10) are not 
constant nor specific functions. The error vector method in (15) 
was applied in this case. Figure 8, figure 9 and Table 4 are the 
results. 
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Figure 8.  Experimental results of parabolic contour tracking (a) Tracking in 

xy plane. (b) RMS contour error in iteration process 
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Analogous to the results in triangle tracking case, FB & 
PDILC control produces the best tracking performance. The 
RMS error decrease of x-axis, y-axis and contour under FB 
and PDILC are, respectively, 61%, 72% and 67%. The 
improvements from TDILC to PDILC are 24%, 22% and 28% 
for x-axis, y-axis and contour, respectively. 

TABLE IV.  EXPERIMENT RESULTS OF PARABOLIC MOTION 

Controller 
RMS Value (μm) 

X Y ε  

FB 22.04 22.94 7.80 

FB & TDILC 14.01 11.61 4.79 

FB & PDILC 8.52 6.49 2.59 
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Figure 9.  Experimental results of parabolic axis tracking. (a) X-axis 

Tracking versus time. (b) Y-axis Tracking versus time. (c) X-aixs error versus 

time. (d) Y-aixs error versus time. 

III. CONCLUSION 

In this paper, a position domain iteration learning control 

algorithm has been presented for contour error improvement 

in a multi-axis motion system. The control law and stability 

condition were discussed in lifted system representation. 

Simulation and experiment of both linear and nonlinear 

contour tracking cases were conducted in a three DOF precise 

positioning stage. A set of controllers (FB, FB & TDILC, FB 

& PDILC) were tested to make comparisons. The 

combination of FB and PDILC was found to be best control 

system for both individual axis and contour tracking 

performance. 

 One future work is the optimal design of parameters in the 

combined PID and PDILC structure. 
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