
Citation: Yang, S.; Gao, X.; Feng, Z.;

Xiao, X. Learning Pose Dynamical

System for Contact Tasks under

Human Interaction. Actuators 2023,

12, 179. https://doi.org/10.3390/

act12040179

Academic Editors: Jing Wang, Zhijie

Xu, Zhenyu Lu and Jonathan Gomez

Received: 8 March 2023

Revised: 14 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Learning Pose Dynamical System for Contact Tasks under
Human Interaction
Shangshang Yang, Xiao Gao, Zhao Feng * and Xiaohui Xiao *

School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
ssy0688@whu.edu.cn (S.Y.); xiaogao@whu.edu.cn (X.G.)
* Correspondence: fengzhao@whu.edu.cn (Z.F.); xhxiao@whu.edu.cn (X.X.)

Abstract: Robots are expected to execute various operation tasks like a human by learning human
working skills, especially for complex contact tasks. Increasing demands for human–robot interaction
during task execution makes robot motion planning and control a considerable challenge, not only
to reproduce demonstration motion and force in the contact space but also to resume working after
interacting with a human without re-planning motion. In this article, we propose a novel framework
based on a time-invariant dynamical system (DS), taking into account both human skills transfer
and human–robot interaction. In the proposed framework, the human demonstration trajectory was
modeled by the pose diffeomorphic DS to achieve online motion planning. Furthermore, the motion
of the DS was modified by admittance control to satisfy different demands. We evaluated the method
with a UR5e robot in the contact task of the composite woven layup. The experimental results
show that our approach can effectively reproduce the trajectory and force learned from human
demonstration, allow human–robot interaction safely during the task, and control the robot to return
to work automatically after human interaction.

Keywords: pose dynamical system; learning from demonstration; contact tasks; human–robot
interaction; robot motion planning and control

1. Introduction

The rapid development of intelligent robots is making it possible to liberate humans
from various physical operations, ranging from industrial manufacturing to our daily life.
There are lots of repetitive contact tasks, such as polishing [1], laying up [2], and wip-
ing [3], where people are being gradually replaced by robots. Due to the fact that accurate
mathematics models are hard to develop directly for motion and force control, learning a
behavior policy from human skills is a promising methodology for robot motion planning
for complex contact tasks. During the robot operation, if an operator would like to examine
the working quality or repair an imperfection, the operator needs to interact with the robot
by dragging the robot. The robot may be released in an arbitrary pose in the free space
or contact space after the interaction. However, traditional methods need to plan a new
trajectory, which achieves the robot returning back to its previous pose to restart work. This
discontinuous operation will reduce the working efficiency significantly. Therefore, a uni-
fied framework of motion planning and controlling is required to achieve state transitions
automatically for the contact task under human interaction.

Robot learning from human demonstration is a widely accepted method for transfer-
ring human skills to a robot. Visual teaching [4], teleoperated teaching [5], and kinesthetic
teaching [6] are common demonstration methods. Kinesthetic teaching allows a human to
manually guide the robot and is commonly applied in contact tasks, such as peg-in-hole [7],
polishing [1], engraving [8], wood planing [9], and so on. The force and trajectory are
collected during the demonstration. After acquiring the demonstration trajectory, a mo-
tion model is established for the robot to reproduce the motion of human demonstration.
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Schematically, the art trajectory-level models can be separated into two major methods:
statistical machine learning methods and dynamical systems. With the statistical estimation
approach, the demonstration trajectory is taken as a random process, and a mathematical
model is established between time and trajectory, such as Gaussian Mixture Regression
models (GMM) [10], Hidden Markov models (HMM) [11], and so on. The endpoint of
the demonstration trajectory is encoded as a stable attractor by a dynamical system (DS),
which has been utilized recently as a flexible method to represent the human demonstration.
Dynamic Movement Primitives (DMP) [12] is a typically and widely used approach of the
DS. DMP is implicitly time-dependent and requires heuristics to reset the phase variable in
the face of temporal perturbations [13]. When robot motion is over one dimension, DMP
learns a model for each dimension, separately. There are also some modified methods based
on DMP, such as probabilistic Movement Primitives (ProMP) [14], Kernelized Movement
Primitives (KMP) [15], and Via-Point Movement Primitives (VMP) [16].

To ensure adaptation to perturbation and a dynamically changing environment, it
is necessary to develop the time-invariant DS. The stable estimator of DS (SEDS) [13] is
one of the time-invariant dynamical systems for learning from demonstration. Then, τ-
SEDS [17] was proposed to solve the problem of a trade-off between stability and accuracy
in SEDS. To establish a DS faster, ref. [18] adopted a new diffeomorphic matching to
transform the demonstration trajectory into latent space to obtain a simple trajectory, and
established a global asymptotically stable DS. Those DS approaches mostly only consider
modeling the position information but ignore orientation information. Ref. [19] established
both position and orientation dynamical systems with DMP in each dimension. Ref. [20]
established the DMP model based on dual quaternion, which describes the translational and
rotational motion in a unified manner. In our previous work [21], the pose diffeomorphic
DS was proposed to model the pose of the demonstration trajectory based on diffeomorphic
matching between the latent and real spaces.

The approaches of modeling human demonstration can be directly used in free space
to execute tasks such as picking up or placing objects [22] through extracting the skills from
the demonstration trajectory [23,24]. In contrast, obtaining the required contact force by
controlling the motion of the robot is always primary for the contact task. With the advan-
tages of DS, it can be extended to the motion planning of continuous contact tasks. Ref. [25]
transformed the skill of composite layup using teleoperation and encoded it with DMP.
They focused on motion reproduction without the force tracking. If the force modulation
is added to the dynamical system, the demonstration force can be also reproduced [26].
Ref. [27] introduced DMP into a hybrid trajectory and force learning frame to realize the
learning of a specific class of complex contact-rich insertion tasks. For the continuing
contact task, force tracking is needed in the whole process of the task execution. Ref. [28]
adopted two groups of DMPs, respectively modeling the trajectory and force, which were
combined with the hybrid force/motion control to adjust the motion and provided enough
contact force to complete the cleaning operation. Ref. [29] combined DMP with admittance
control to obtain the desired force and maintain the stability of the system through an en-
ergy tank polishing task. Further, they combined DMP with iterative learning control (ILC)
to obtain the expected force using several iterations [30]. It should be noted that the men-
tioned approaches apply DMP with force control modulation under an ideal environment
without any interaction from the human. If an interaction occurs during the task execution,
it is significant for the motion planning to satisfy both the human–robot interaction and
the pose of the robot resuming work. Ref. [19] encoded both the demonstration trajec-
tory and z-direction force using the DMP model, and controlled the robot reproduction
demonstration with a Cartesian impedance controller. If the robot motion was transiently
stopped and slightly altered in the motion planning of DMP, the temporal coupling term in
the canonical system was changed to delay or restart execution [19]. If the operator tries
moving the robot away from the work platform, it will generate a large pose error. Ref. [31]
designed the impedance controller frame with various velocity sources. In the case of an
interaction wherein velocity sources are switched off, the human can interact with the robot
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in force/torque mode. When the motion is modeled by the time-invariant DS, the robot
would resume working automatically by online motion planning after human interaction.
Refs. [3,32] used the time-invariant DS of position to plan the robot polishing trajectory
and track constant force based on impedance control with force correction calculated by
Gaussian Radial Basis kernel functions. In [3,32], the process of obtaining force correction
was found to be complex compared with the force control in [31]. In [3,32], the orientation
was obtained through support vector regression to estimate the normal distance and vector
to the surface, which needs to be combined with a motion capture system. Meanwhile,
in [3,25,31], the methods of force control were based on the impedance control scheme,
which limits the application of the methods for the position-controlled robot [33].

Considering the aforementioned issues, a novel framework for learning contact skills
was addressed in this work. The framework is capable of controlling position-controlled
robots reproducing human skills, interacting with humans compliantly during the execu-
tion, and returning back to work automatically after the human interaction. In this scheme,
kinesthetic teaching was utilized to collect human skills for executing contact tasks. To real-
ize the online planning of both position and orientation, the demonstration trajectory was
modeled using a pose DS that is state-dependent and time-invariant. Taking into account
the different demands in the process of the robot executing the contact task with human
interaction, two motion controllers were designed by extending the time-invariant pose DS
with admittance control for the three subtasks, which are reaching contact space, executing
the contact task, and interacting with a human, respectively. After the human interaction,
the robot recovers the modeled trajectory automatically without external information such
as calculating the desired orientation using vision. To validate the proposed framework in
the paper, we conducted two group experiments in the contact task of laying up composite
material with a UR5e robot manipulator, which involved executing the task independently
and executing a contact task with human interaction during the task. In addition, an exper-
iment on offline force controlling was also conducted. The two group experiments were
also carried out under the motion modeled by DMP. The results of force tracking in the
proposed method are close to those methods of offline force controlling and the motion
modeled by DMP.

The main contributions of this article can be concluded as follows:

(1) Learning pose state-dependent and time-invariant DS is proposed to achieve fast
online planning of trajectory for the contact task;

(2) We provide a contact task skills learning framework for the position-controlled robot to
reproduce both the trajectory and the force of the human skills and achieve interaction
with the human compliantly during the robot operation.

The rest of this paper is organized as follows: Section 2 will introduce the proposed
framework and methodology for learning contact task skills from demonstration and
achievement of the execution of the contact task with human interaction. The experimental
validation and the experimental results are presented in Section 3. Finally, Section 4
concludes this work.

2. Methodology

In this section, we first introduce the proposed framework, which includes data
collection, motion model, and task execution, as shown in Figure 1. The statement has
been changed in the manuscript. Firstly, the data of the person completing the contact
task were collected through two demonstrations. For the first demonstration, the robot
was controlled by admittance controller A. For the second demonstration, the robot was
controlled by admittance controller B. The two demonstrations will be introduced in detail
in Section 2.1.

Then, the time-invariant pose DS of the contact task was learned by the pose diffeo-
morphic DS with the demonstration trajectory in Section 2.2. Finally, different motion
controllers were designed for various demands during the task execution based on the pose
DS and admittance controller in Section 2.3. In order to obtain the desired contact force in
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the contact space, the robot motion was controlled by modulating the z-direction velocity of
the pose DS with admittance controller C. During the task execution, if a human interacted
with the robot, the admittance controller A adjusted both linear and angler velocity to move
along the intention of the human under the pose DS. Considering that the robot needs to
resume working after the interaction, the velocity of the robot was generated by the pose
DS on the fly, which was modified by admittance controller A.

Figure 1. The framework for the robot learning the contact task skills under human interaction.
The data of the human executing the contact task are collected by kinesthetic demonstration.
The demonstration trajectory is modeled by a time-invariant pose DS. Considering the various
demands for human–robot interaction, the robot reproducing human skills, and resuming working,
the different motion controllers were designed based on the pose DS and admittance control.

2.1. Human Demonstration

In industrial tasks such as polishing and layup, to a great extent the contact force in
the normal direction of the contact surface affects the manufacturing quality for the contact
task. Thus, the normal contact force is expected to be obtained in the normal direction of the
surface during the human demonstration. However, it is difficult for an operator to perform
a task keeping the z-direction of the end-effector along the normal surface. We adopted
two demonstrations to collect information about the human performing a contact task,
which included both trajectory and force. The position of the robot motion was collected by
the human moving the end-effector arbitrarily during the first demonstration. The normal
vector of the demonstration position on the surface can be obtained from the information of
the surface. For the second demonstration, the robot moved along the first demonstration
position, while the z-direction of the end-effector was the same as that of the normal surface
. Furthermore, the human exerted force on the end-effector along the z-direction of the
end-effector. Thus, the demonstration force was obtained by the second demonstration.

Data were collected through kinesthetic teaching with the demonstration platform,
which included a free-form surface mold, UR5e robot with an internal six-dimension
force/torque sensor Sin in the robot end tool Jend, a handle C0, another six-dimension
force/torque sensor Sout, and an end-effector Tend for executing contact tasks. The position
relationships and all coordinates of the platform components are shown in Figure 2. The
Tend coordinate system {E} and the sensor Sout coordinate system {F} were shifted along
the z-axis of the Jend coordinate system {J}. The directions of the mold coordinate system
{M} were the same as those of the base coordinate system {B} of the robot base Bbase.
The human demonstrated a task by grasping the C0 and pushing the Tend on the surface
of the mold with force Fh ∈ R6×1. The Fe ∈ R6×1 and Fenv ∈ R6×1 are action and reaction
forces between the Tend and the mold. The force/torque Fin ∈ R6×1 is the measured value
of Sin. Fin is composed of human interaction force Fh, Fe, and the gravity of components
below the Sin. Meanwhile, the force/torque Fout ∈ R6×1 is the measured value of Sout. Fout
is composed of Fe and the gravity of Tend.
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Figure 2. Schematic diagram of demonstration platform. The platform was designed to collect
trajectory and force by the kinesthetic demonstration.

When the human demonstrated, the robot motion was controlled by the admittance
control scheme. For the first demonstration, admittance controller A was used to control
the end-effector to follow the human hands moving. To avoid the robot movement being
affected by the external gravity of C0, Sout and Tend, the gravity was compensated for
with Sin. After the gravity was compensated for, the value of Sin became Fin

′
. Admittance

controller A can be written as:
M ξ̈e + Bξ̇e = Fext, (1)

with

Fext =
B
J TFin

′
=

[
B
J R 03×3

Pt0
B
J R B

J R

]
Fin
′
, (2)

where the mass M ∈ R6×6 and the damping B ∈ R6×6 are diagonal symmetric definite
matrices; ξe = [xe, θe]T is the pose of {J}; Fin = [ fin, τin]

T ; B
J T is the force transform matrix

from {J} to {B}, B
J R is the rotation matrix, Pt0 is the skew-symmetric matrix of the vector

B
J P. When the end-effector is in the free space, Fin

′
is equal to Fh.

In the method of discrete-time step, the commanded pose ξch of the robot is expressed as:{
ξch(k) = dt ξ̇ch(k) + ξe(k)

ξ̇ch(k) =
Fext(k)−Bξ̇ch(k−1)

M dt + ξ̇ch(k− 1),
(3)

where ξe is the real pose of the robot; ξ̇ch is the commanded linear and angular velocity;
dt is the control period; k is the time step.

For the first demonstration, the trajectory ξ0 = {x0, q0} of {J} was collected in {B}.
The normal vector Nz of x0 on the mold surface can be obtained based on the Standard
Triangle Language (STL) in {B}. Nz is taken as z-axis of the {J} in {B}. The direction of
the {J}motion is Ny0, which is taken as y-axis of the {J} in {B}. The new x-axis of {J} in
{B} can be expressed as:

Nx = Nz × Ny0. (4)

The new y-axis Ny is perpendicular to Nx and the z-axis, so Ny can be written as:

Ny = Nz × Nx. (5)

Through Equations (4) and (5), the desired orientation of the {J} in {B} is {Nx, Ny, Nz}. Fur-
ther, it can be represented by the four components of the quaternion q1 = (qw1, qx1, qy1, qz1)

T [34].
ξ1 = {x0, q1} is taken as a reference trajectory for the second demonstration. The pose
of the robot end joint was controlled by the original position controller of the robot with
the trajectory ξ1 except for the z-direction position. For the second demonstration, the
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z-direction position was controlled by admittance controller B, which is one dimension of
admittance control. The admittance controller B can be expressed as:

mẍ + bẋ = fext, (6)

where m is mass; b is damping; x is the z-direction position of the end joint; fext is the
z-direction force of Fext. The z-direction commanded position can be obtained by the same
calculation as Equation (3). Thus, the z-direction of the end joint moves following the force
of the human hands.

The contact force between the end-effector and the mold in {E} is calculated as:

Fe =
E
F TF

′
out =

[ E
F R 03×3

Pt1
E
F R E

F R

]
Fout

′
, (7)

where E
F T is the force transform matrix from {J} to {B}; E

F R is the rotation matrix; Pt1 is the
skew-symmetric matrix of the vector E

FP; Fout
′

is obtained by gravity compensation for Fout.
The force/torque Fdemo = Fe in {E} and the trajectory ξdemo = {xdemo, qdemo} of the

{E} in {B} are collected by the second demonstration. Finally, Fdemo and ξdemo are taken as
the demonstration force and trajectory.

2.2. Pose DS Establishment

In order to represent the human demonstration trajectory for contact tasks, the demon-
stration trajectory was modeled by the pose DS through diffeomorphic mapping. Mean-
while, the diffeomorphic mapping was established between the trajectories in different
spaces. As shown in Figure 3, there are three spaces, which areA, B and C. A new trajectory
can be obtained by subtracting the end point pose of the demonstration trajectory from
the demonstration trajectory pose in the space B. As shown in Figure 3c, the trajectory in
the real space B is obtained from the LASA handwriting dataset [13] using the method.
To establish orientation DS based on the position, the simple trajectories were developed
in the latent space A and latent space C. The position in space A and space C is a simple
straight line from the start point and end point of the trajectory in space B, as shown in
Figure 3a,b. The orientation of every point in space C is equal to the unit quaternion
[1, 0, 0, 0]T. The orientation in space A is obtained by the method of interpolate between the
orientation of the start point and end point of trajectory in space B.

Based on the trajectories in different spaces, the diffeomorphic mapping Φ1 from
spacesA to B and the other diffeomorphic mapping Φ2 from spaces C toAwere established
for both position and orientation with the iterative method [35]. Based on the diffeomorphic
mappings and established pose DS in A, the motion online planning is realized in B.

y 
(m

m
)

(a) Space C (b) Space A (c) Space B
x (mm) x (mm)x (mm)

Figure 3. The trajectories in the different spaces.
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The new trajectory ξB = {xB , qB} is obtained by taking the endpoint ξend = {xend, qend}
of ξdemo as equilibrium point {0, qI}, with qI = [1, 0, 0, 0]T . The trajectory ξB is expressed as:{

xB = xdemo − xend
qB = qend

−1 ∗ qdemo.
(8)

The simple trajectory ξA = {xA, qA} in A is generated by:{
xA = txB1
qA = qB1

t,
(9)

where t = N−i
N−1 (i = 1, 2, . . . N), N is the sample size of the demonstration trajectory,

{xB1, qB1} is the first point pose of the trajectory ξB .
The other simple trajectory ξC = {xC , qC} = {xA, qI} is developed in the space C. Φ1

and Φ2 are expressed as:

Φ1 :
{

xB = h1(xA)
qB = g1(xA) ∗ q,

Φ2 :
{

xA = xC
qA = g2(xC).

(10)

The established DS in the space A can be expressed as:{
ẋ = γ1(x)Px, γ1(x) > 0
w = γ2(q)β log(q ∗ ḡ2(x)) + wr, β < 0,

(11)

with

γ1(x) =

{
‖x1‖

N∆t‖x1‖
, ‖x‖ ≥ ‖x1‖

N
1

∆t , otherwise.
(12)

where the point {x, q} in A; w is the angular velocity of the orientation DS in A;
wr = −2q ∗ ∂ḡ2(x)

∂x ∗ g2(x) ∗ q̄ is the feedforward term; P is the symmetrical negative
matrix factorization; γ2(q) = 1.

The online pose in C can be calculated by two inverse mappings of Equation (10) with
the pose {xB , qB} in B. The position in C is the same as the position in A in Equation (10),
but the orientation is different in two spaces. Then, the result of the orientation mapping is
taken as the goal orientation in A through the forward mapping from C to A. The desired
linear and angular velocity can be obtained in A with Equation (11). The increment of
the pose in the A space for the next time step can be obtained by multiplying the desired
velocity by the control period. The expected pose in space A can be obtained by adding the
increment of the pose to the current pose. Further, the desired pose in B can be obtained by
forward mapping in Equation (10). Thus, the time-invariant pose DS is established for the
demonstration trajectory.

When the robot starts moving with an arbitrary pose, the robot pose will be the same
as endpoint of the demonstration trajectory at last, but it cannot immediately obtain the
desired orientation when the position changes [21]. For the contact task, it is necessary for
the robot to move along both the position and orientation of the demonstration trajectory
during task execution. Meanwhile, the robot must recover its desired orientation immedi-
ately from a large orientation error after human interaction. We adjusted the orientation DS
by changing γ2(q) to 1 to achieve the desired orientation immediately.

2.3. Motion Controllers for Reproducing

As stated in Section 2, we divided the task process into three subtasks for the robot:
reaching the contact space, executing the contact task, and interacting with the human.
We designed the different motion controllers for the three subtasks, respectively, which
are shown in Figure 4. The only difference between the first and the second subtask is
the value of the desired force, which determines how long it takes for the robot to reach
the contact space from the free space and the value of contact force in the contact space,
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respectively. The motion controllers were designed for the first and the second subtasks
based on admittance controller C. Furthermore, the other motion controller was developed
to handle the third subtask of human–robot interaction based on admittance controller A.

Figure 4. Motion controllers for the contact task execution. The admittance controller C adjusts
z-direction velocity to obtain the desired force in the contact space or achieve robot return contact
space fast and safely after human interaction. Admittance controller A modulates the both the linear
and angular velocity to realize robot movement along human interaction.

Admittance controller C was used to modulate the position DS in the z-direction
to track the desired contact force in the contact space or control the speed of the robot
reaching the contact space. For the contact task, the DS motion planning was different
from the off-line motion planning, in which offline trajectory and desired force were one-
to-one matching. In contrast to the demonstration, online motion mapping and planning
characteristics of the diffeomorphic pose DS made the motion steps of online motion not
equal to the demonstration sample size. For online motion planning, the desired force can
be defined as:

fd = αS f F i
demo, (13)

where S f = [0, 0, 1, 0, 0, 0]; F i
demo ∈ R6×1 is the teaching force at the nearest demonstration

position from the current point; α > 0 is the regulation coefficient of desire force/torque.
When the robot executes the second subtask, α is 1. In the first subtask, the speed of
the robot reaching the contact space was modified by the value of α, which must be an
appropriate value to avoid a large collision force for the robot reaching contact space.

The commanded linear velocity vc f is obtained by combining ∆v and the velocity of
the position DS vB. It can be written as:

vc f = vB + ∆v, (14)

where ∆v = B
ERSc = B

ER(Sz∆vz), B
ER is the rotation matrix, Sz = [0, 0, 1]T , ∆vz is the

z-direction excepted velocity produced by the admittance controller C.
As the angular velocity wd is calculated by the orientation DS, the commanded velocity

of the pose is ξ̇c f = {vc f , wd}. The robot moves without a reference trajectory, compared
with the traditional admittance controller architecture, so let us define the commanded
pose ξc = [Xc, qc]T as:

ξc = ξe + ξ̇c f dt. (15)

The ∆vz can be obtained from admittance controller C. The principle of admittance
controller C can be expressed as:

m f ë + b f ė + k f e = ∆ f , (16)

where m f , b f and k f are the mass, damping, and stiffness with the appropriate values,
respectively; e is the error between the commanded z-direction position and real z-direction
position in {E}; ∆ f = fd − fe, fe is the z-direction contact force of Fext.
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Equation (16) can be converted to its discrete format as:{
ẋcz(k) = ẍcz(k)dt + ẋe(k)

ẍcz(k) =
∆ f (k)−b f [ẋc(k−1)−ẋe(k)]−k f [xc(k−1)−xe(k)]

m f
+ ẍe(k),

(17)

where ẋcz and ẍcz are expected velocity and acceleration produced by the admittance
controller C; xc and ẋc are the z-direction position and the velocity of E

BRXc and E
BRvc f ; xe,

ẋe, and ẍe are the z-direction position, velocity, and acceleration of the end-effector in {E}.
When the human interacts with the robot with the force over the threshold in the

x-orientation or y-orientation, the subtask changes from the second to the third subtask.
Meanwhile, the robot is controlled by the third motion controller. The robot will move
following the human intention with the pose modulation, which is calculated by the
admittance controller A of Equation (1) through the contact force between the hands and
the robot. In the second motion controller, the commanded pose and velocity of the robot
can be expressed as: {

ξc = ξe + ∆ξch
∆ξch = dt(ξ̇ch + ξ̇d),

(18)

where ξ̇d = {vB, wd} is the velocity of the pose produced by the pose DS; ξ̇ch is also
calculated by Equation (3); ξ̇

′
ch = {w′

ch, v
′
ch}, w

′
ch = wd + wch,v

′
ch = vB + vch, in Figure 4.

3. Experiment
3.1. Contact Task Demonstration and Simulation

We established the platform for both collecting demonstration data and reproducing
the human demonstration for the contact task as shown in Figure 5, which includes the
same components as Section 2.1. The coordinate systems were established, as shown in
Figure 5a. The trajectory and force of human demonstration were obtained by kinesthetic
teaching in Figure 5b based on the proposed method in Section 2.1. As the gravity of
the Tend was small for the platform, the Fout

′
was approximately equal to Fout. When the

human demonstrated the contact task, the collecting force was jittery. In order to obtain the
smoothed desired force in the z-direction, cubic smoothing splines were used to fit a smooth
curve from the original demonstration force. The parameters of admittance controller A
were adjusted according to the need for compliant human–robot interactions. When the
human demonstrated the task for the first time, the parameters of admittance controller
A were set to M = diag [1, 1, 1, 1, 1, 1] Kg, B = diag [B1,B2], B1 = diag [0.3, 0.3, 0.3] Ns/m,
B2 = diag [0.03, 0.03, 0.03] Nms/rad. The parameters of admittance controller B were the
same as the parameters of admittance controller A in the z-direction position. For the second
demonstration, the parameters of admittance controller B were m =1 Kg, b =0.3 Ns/m.
The demonstration pose is shown in the Figure 6a, and the demonstration force in the
z-direction is shown in Figure 6b.

(a) Established platform (b) Kinesthetic teaching

Figure 5. Platform of the contact task. The platform is built for the contact task of the composite
woven layup. The human guides the robot for the contact task teaching.
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(a) Demonstration pose

0 10 20 30 40
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-40
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-20

-10

F
o
rc

e 
(N

)

 Obtained force

Original force

(b) Demonstration force

Figure 6. Data of the demonstration.

The pose DS was established based on the method in Section 2.2 with the demonstra-
tion trajectory. Our computer had a 3.7 Ghz Intel Core i5-9600KF CPU (six cores) and 16 GB
memory. With our approach, the two mappings cost 1.01 s to train the demonstration trajec-
tory. By multiplying the linear and angular velocity calculated by DS in the control period,
we obtained the expected pose increment. The control period was set to 0.02 s. The motion
was completed when the distance between the current position and the end-point was less
than 0.003 m. In order to test the computation efficiency of our method, we conducted
a simulation without a robot model. Each running step cost 0.019 s, and the simulation
took 11.07 s to complete. We used two group Dynamic Movement Primitives (DMP) [36] to
model our demonstration trajectory. We modeled the position of the demonstration data in
three dimensions of DMP, and modeled the orientation of the demonstration data in four di-
mensions of DMP. The time taken to train the demonstration trajectory in the manuscript
was 11.72 s with DMP. The time taken to finish the simulation was 0.58 s, and every running
step cost 0.00025 s. Compared with the training time of the methods in [13] and DMP, our
approach achieved the transfer of the human demonstration to the robot more quickly. To
obtain the linear and angular of DS online, the pose in the real space needs to be mapped
into the latent spaces for our method. Our approach involved two mappings, which were
established based on an iterative method, so completing the mappings online took some
time. Therefore, it took a long time to perform the computations online at every time step.

Three simulations were performed without force control to illustrate that the estab-
lished time-invariant pose DS can reproduce the trajectory of human demonstration and
re-plan motion automatically after human interaction for the contact task. The pose of the
start point for the first simulation was the same as the first point of the demonstration
trajectory, and the other two simulations started from the points with an arbitrary pose in
the free space. In the third simulation, the perturbations occurred during the robot move-
ment. The changes in the robot pose are shown in Figure 7a during the three simulations.
Meanwhile, the robot pose errors are shown in Figure 7b for the three simulations. The pose
errors of the first simulation were always within 0.003 m and 3.0°, so the first simulation
trajectory closely coincides with the demonstration trajectory. The established pose DS can
reproduce the motion of human demonstration for the contact task. The starting points of
the other two simulations had a large pose difference from the demonstration trajectory
but, as the robot moved, the position and orientation errors were gradually reduced as
shown in Figure 7b. Meanwhile, the perturbations occurred in the third simulation. The
robot was stopped at 10∼15 s and moved away at 25∼30 s in the third simulation. As
the robot restarted moving after 15 s in the third simulation, it could still move along the
demonstration trajectory. The robot pose errors of the third simulation became small again
after 30 s. This means the learning pose DS for the contact task is not sensitive to both
temporal and spatial perturbations. Finally, all three simulations could obtain a small pose
error at the endpoint. Thus, the established pose DS can model the demonstration trajectory
well and adapt to different initial poses and perturbations.
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(a) Changes in the robot pose

(b) Pose errors

Figure 7. Simulations of the established pose DS. The robot starts moving from different poses for
the three simulations. The trajectories of the three simulations are shown in ROS Rviz visualizer.
The position and orientation errors of three simulations are obtained.

3.2. Experiments of the Contact Task

To verify the effectiveness of our approach, different experiments on contact tasks
were performed on the platform in Section 3.1. To explore the result of the method for the
robot learning skills of contact task from human demonstration, the first experiment was
executed under the motion controller of the second subtask in Section 2.3. The robot began
moving from the first point of the demonstration trajectory for the first experiment. Mean-
while, to compare the results of force tracking under the offline motion planning, another
experiment was conducted by taking the demonstration trajectory as a reference trajectory.
To compare our approach with DMP, the experiment was also carried out under the motion
modeled by DMP with no interaction. Another experiment was conducted under the robot
moving from free space in our method. When the robot reached the contact space from free
space in the experiment, it was controlled by the motion controller of the second subtask
in Section 2.3. There were also two experiments under human interaction. For these two
experiments, the motion was modeled by our approach and DMP, respectively. When a
human interacted with the robot, the robot was controlled by the motion controller of the
third subtask in Section 2.3.

The first experiment was conducted in our method under no interaction. The parame-
ters of the admittance controller C can be obtained by being adjusted to obtain less force
error in the z-direction. The parameters of admittance controller C were set to m f = 1 Kg,
b f = 80 Ns/m, k f = 10 N/m. The measured trajectory of the experiment is shown in
Figure 8a. The measured trajectory was close to the demonstration trajectory. The pose
errors between measured and demonstration trajectory of the first experiment are shown in
Figure 8b. The position errors were within 0.008 m, and the orientation errors were within
2.75°. The root mean square error (RMSE) of position and orientation were 0.003 m and
1.77°, respectively. The small pose errors showed good reproduction of the demonstration
motion under the robot motion controller of the second subtask in Section 2.3.

The contact force and force error between the measured and desired force of the
experiment are shown in Figure 9 for the proposed method. When the robot starts moving,
the force error is the biggest. The biggest absolute value of the force error is 4.18 N, ex-
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cept for the beginning of motion. The RMSE of force is 1.04 N for the whole process of the
experiment. The demonstration trajectory increases at the position close to the endpoint,
as shown in Figure 8a. When the robot moves near the endpoint of the demonstration tra-
jectory, the robot motion tends to the endpoint of the demonstration trajectory. This results
in bigger positive force errors near the endpoint of the demonstration trajectory, as shown
in Figure 9b. The proposed method can realize the reproduction of the demonstration force.
To explore the repeatability of the reproducing demonstration, the experiment was repeated
ten times under the same parameters of admittance controller C. For the ten experiments,
the RMSE of position and orientation were 0.003 m and 1.78°, respectively. Meanwhile,
the RMSE of the contact force was 1.04 N. The proposed method can achieve reproduction
of both the trajectory and the force.
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Figure 8. Experiment trajectory and pose errors of robot moving from the contact space under
no interactions.

The contact force and force errors of the experiment with offline motion planning are
shown in Figure 10. The biggest absolute of the force error is 3.44 N, except for the beginning
of motion. The RMSE of force is 1.06 N of the whole process of the experiment. The second
experiment was also repeated ten times. For all repeated experiments, the RMSE of the
contact force was 1.07 N. Compared with the commanded velocity of force tracking under
offline motion planning, the commanded velocity for the second subtask was obtained by
combining the pose dynamical system and the modulation velocity calculated by admit-
tance controller C. Meanwhile, the commanded pose was obtained by adding the position
increment to the current pose. That resulted in the smaller force errors change, but it had a
greater number of positive force errors near the endpoint. The proposed method obtains a
similar RMSE of force to the method of offline motion planning.
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Figure 9. Measured force and force errors under motion modeled by our approach and no interactions.
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Figure 10. Measured force and force errors under off-line force control.

When the robot executes the contact task under motion modeled by DMP, it is con-
trolled to obtain the desired motion and force by the the same motion controller of the
second subtask as in the first experiment. Compared with the parameter of admittance
controllers in the first experiment, the parameters of admittance controller C are the same.
In the experiment, the robot reproduced the contact task under no interactions. The contact
force and force error were obtained as shown in Figure 11. The biggest force error was
3.57 N, and the root mean square error (RMSE) of the force was 1.36 N. The experiment was
also repeated ten times under the same parameters of admittance controller C. The RMSE
of the contact force was 1.11 N for the ten repeated experiments. The results of force and
force error are close to those of off-line motion planning for the motion modeled by DMP.
Compared with methods of the off-line and DMP motion planning, the proposed method
obtains a similar RMSE of force.
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Figure 11. Measured force and force errors under motion modeled by DMP and no interactions.

The measured trajectory of the experiment is shown in Figure 12a under the robot
moving from the free space. As the robot moves from the free space, the measured trajectory
gradually becomes close to the demonstration trajectory. When the robot reaches the contact
space, the value of α is 0.18 in the motion controller of the second subtask. The pose errors
of the whole process of the robot motion are shown in Figure 12b. The contact force and
force errors of the experiment are shown in Figure 13. The robot reaches contact space
and is controlled by the motion controller of the first subtask after 7 s, which modulates
the robot motion to obtain the desired force. When the robot reaches the contact space,
both the position and orientation errors can continue reducing, as shown in Figure 12b.
When the robot tracks the desired force, the biggest absolute value of the force error is
4.44 N. The proposed method can ensure the robot begins working from free space.



Actuators 2023, 12, 179 14 of 20

-0.1

0

1

0.1

0.2

z/
m

y/m 0.5

x/m

0.450 0.40.350.30.25

Demonstration trajectory

Measured trajectory

Start point

End point

(a) Experiment trajectory

0 10 20 30 40 50

Time(s)

0

0.05

0.1

P
o
si

ti
o
n
 e

rr
o
r(

m
)

0

20

40

60

O
ri

e
n
ta

ti
o
n
 e

rr
o
r(

°)Position error

Orientation error

(b) Pose errors

Figure 12. Experiment trajectory and pose errors of robot moving from the free space under
no interactions.
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Figure 13. Measured force and force errors under robot moving from the free space under
no interactions.

The process of the experiment with interactions is shown in Figure 14a. Because the
linear and angular velocity of DS exists, the parameters of admittance controller A are
different to those in the demonstration. The method of obtaining the parameters of ad-
mittance controller A is also based on compliant human–robot interaction. When the
operator interacts with the robot, the parameters of admittance controller A are set to
M = diag [0.8, 0.8, 0.8, 0.1, 0.1, 0.1] Kg, B = diag [B3,B4], B3 = diag [0.4, 0.4, 0.4] Ns/m,
B4 = diag [0.4, 0.4, 0.4] Nms/rad for the proposed method. At first, the robot starts work-
ing from the first point of the demonstration trajectory in the contact space under the motion
controller of the first subtask, as shown in Figure 14a. When the human interacts with the
robot with force larger than the threshold value, the motion controller is changed into the
motion controller of the third subtask. The threshold value of force is 8 N in the y-direction.
There were two interactions in the experiment. For the two interactions, the human grasped
and moved the end-effector, respectively, as shown in the second picture of Figure 14a.
For the first interaction, the operator moved the end-effector away from the contact space
at t1 (17.1 s) and held it in the free space at t1 (17.1 s)∼t2 (22.1 s). The end effector was
moved under human intention compliantly in the free space for the second interaction
at t4 (46.7 s)∼t5 (49.7 s). When the absolute value of the x-direction force was less than
4 N and the absolute value of the y-direction force was less than 2 N, the interaction was
considered finished. As soon as the absolute value of the z-direction force reached 3 N,
the robot reached the contact space and resumed its operation. After the two interactions,
the robot resumed executing the contact task from free space at t3 (27.3 s) and t6 (57.7 s),
as shown in the third picture of Figure 14a. Finally, the robot reached the endpoint as
shown in the fourth picture of Figure 14a. The trajectory of the experiment is shown in
Figure 14b. The human began interacting with the robot at grasp point 1 and grasp point
2 in Figure 14b, respectively. The robot was released at release point 1 and release point
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2, respectively. When the robot reached the mold surface after the interactions, the robot
resumed executing the contact task again. The pose errors of the whole process are shown
in Figure 14c. During the first interaction, the value of pose errors kept increasing and was
at a near constant value at 18.5∼22.1 s. For the second interaction, the pose errors became
large as the robot moved away from the mold. The human can drag the robot moving in
the free space as shown in the second picture of Figure 14a. When the human released
the robot at the release point in Figure 14b, the motion controller changed back to the first
motion controller for the first subtask in Section 2.3. After the robot was released, both
the position and orientation errors reduced quickly. When the robot executed the contact
task, the biggest position error was 0.02 m after the first interaction in Figure 14c. After
the robot resumed executing the task, the pose errors could decrease under force control.
The biggest orientation error was 2.0° for the robot executing the contact task in Figure 14c.
Finally, the robot reached the endpoint along the demonstration trajectory with a small
pose error.

The changes in contact force and force errors of the experiment are shown in Figure 15.
When the human interacted with the robot at t1∼t2 and t4∼t5, there was no desired
force. After the interaction, the robot recovered the contact task from free space under the
0.18 times the desired force at t2∼t3 and t5∼t6 . This achieved the robot resuming working
quickly. When the robot executed a task independently, the biggest force error was 4.50 N
near the endpoint of the trajectory. The proposed framework can realize the robot learning
the skills of a contact task from human demonstration and interacting with a human during
the task execution.

(a) The states of the robot (b) Experiment trajectory

(c) Pose errors

Figure 14. Experiment trajectory and pose errors of robot executing a contact task under interactions.
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(a) Measured forces

(b) Force errors

Figure 15. Measured force and force errors of robot executing a contact task under interactions.

Another experiment was conducted under motion modeled by DMP and interac-
tion. In this experiment, there were two interactions. The parameters of admittance
controller A were set to M = diag [0.4, 0.4, 0.4, 0.04, 0.04, 0.04] Kg, B = diag [B5,B6],
B5 = diag [0.4, 0.4, 0.4] Ns/m, B6 = diag [0.4, 0.4, 0.4] Nms/rad. The parameters of ad-
mittance controller A were adjusted according to the need of compliant human–robot
interactions. The two interactions occurred in the middle and near the end of the demon-
stration trajectory, respectively. As shown in Figure 16a,b, the experiment trajectory and
pose error are presented, respectively. At t1

′
(20.53 s) , the operator grasped the end-effector

and moved it away from the contact surface for the first interaction. The robot recovered
execution of the task at t3

′
(31.07 s) after being released at t2

′
(24.85 s). The other interaction

occurred at t4
′
(38.79 s), and the robot was released at t5

′
(52.65 s). After the second interac-

tion, the robot reached the contact space at t6
′
(59.01 s). It took about 53.51 s for the robot

to complete the task under no interaction as shown in Figure 1. As soon as the robot was
released after the first interaction, the forcing term of the DMP drove the robot to move
toward the demonstration trajectory. After the second interaction finished, the time was
close to the time of the robot accomplishing the task independently. Meanwhile, since
the forcing term of the DMP is time-related, the robot was unable to return to the pose
before the interaction. After the second interaction, the robot was mainly controlled by the
second-dynamic system of the DMP, which ensured the robot moved to the end-point of
the demonstration trajectory.

In Figure 17, the contact force human interaction is presented. As the robot moved
toward the end point after the second interaction, there was no contact force between
t5
′
(52.65 s) and t6

′
(59.01 s). Thus, after an interaction, if the time exceeds that of the robot

executing independently, the robot is not able to recover execution of the contact task under
the motion modeled by DMP. After being released by the human, the robot can recover
the close pose of the demonstration trajectory using our approach, as shown in Figure 15b.
For the second interaction, the released point was in front of the grasp point, and the
recontact point was also in front of the released point as shown in Figure 15b.
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(a) Experiment trajectory

(b) Pose errors

Figure 16. Experiment trajectory and pose errors under motion modeled by DMP and interactions.

Figure 17. Experiment force under under motion modeled by DMP and interactions.

3.3. Discussion

Our algorithm can be generalized to different scenarios, such as polishing, wiping,
pressing etc. Meanwhile, it can deal with the interaction during the robot execution of
the task. There is no force control mode available on most commercialized robots, which
places an emphasis on following position with accuracy. Our framework is suitable for
a position-controlled robot. These tasks require the robot to move along the planning
trajectory and to obtain the desired force. The trajectory and force can be obtained by
the method of kinesthetic teaching for those tasks in this manuscript. By adjusting the
parameters of admission controllers A and C, the method of kinesthetic teaching in this
manuscript can be accomplished for the different tasks, end-effectors, and robots.

The algorithm can quickly model the motion based on the demonstration data in the
paper. Meanwhile, both the orientation and the position can be modeled based on our
approach. Admittance controller C modulates the robot motion to obtain the desired force.
The parameters of controller C can be obtained by manual adjustment online, based on
the results of force tracking. According to the results of the experiments in Section 3.2,
our approach can reproduce the demonstration from the contact space or the free space.
When the human interacts with robot, the robot can move along with the human intention.
Compared with the method of motion planning by DMP, these approaches can make the
robot return to the demonstration trajectory near the released point. A compliant human–



Actuators 2023, 12, 179 18 of 20

robot interaction can be achieved by adjusting the parameters of admittance controller A.
Thus, our approach can achieve robot execution of tasks in a more complex environment,
such as at home or at the hospital. Meanwhile, the robot will be able to perform more
diverse contact tasks, such as robotic ultrasound scanning [37] and massage [38].

4. Conclusions

We proposed a framework for robots learning contact task skills from human demon-
stration, which considers trajectory, contact force, and human–robot interaction. Through
two demonstrations, the demonstration trajectory and force were collected. To achieve
robot motion planning online, a time-invariant DS was built to model the motion. Fur-
ther, to reproduce the motion and contact force with human interaction, the entire contact
task execution was separated into three subtasks, for which two motion controllers were
developed based on the pose DS and different admittance control schemes. Experiments
with the UR5e robot verified that the robot can reproduce contact task skills of human
demonstration. For experiments repeated ten times under the same motion controller
parameters and with no interaction, the RMSE for position, orientation, and force were
0.003 m, 1.78°, and 1.04 N, with the robot executing the task independently. Compared
with the method of motion planning with the DMP and offline, the results of force tracking
are similar. When the human interacts with the robot, the robot can succeed in moving with
human intention. In our method, the robot is able to reach the demonstration trajectory
near the released pose after human interaction, compared with the motion modeled by the
DMP. In the future, to increase the acceptability and usability of the proposed approach,
we will consider developing strategies to achieve higher computation efficiency.
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