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Abstract: High precision tracking of periodic trajectories is eagerly desired in many applications that utilize piezoelectric
nanopositioning stages. Although repetitive control (RC) can improve tracking performance for commonly-used periodic ref-
erence input, it is sensitive to unexpected or non-periodic disturbances that deteriorate tracking precision. In order to achieve
the anticipated performance, in this paper, a new control scheme of model-assisted extended state observer (MESO) based RC
(MESORC) is developed, where MESO is utilized to estimate as well as compensate disturbances and the estimated state vari-
ables are also used to design state feedback based RC for a non-minimum phase (NMP) system with disturbances. To validate
the effectiveness of the proposed method, comparative experiments are performed on a piezoelectric nanopositioning stage. Ex-
perimental results indicate that the hysteresis is suppressed effectively and the proposed method achieves the highest precision
tracking of 40Hz triangular reference with delta and chirp disturbances comparing with proportional plus derivative controller
and traditional RC.
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1 Introduction

The piezoelectric nanopositioning stage has became an

important component to achieve high-precision tracking

or positioning for nanometer or sub-nanometer resolution

in many applications, such as atomic force microscopes

(AFMs) [1], surgical device [2], ultra-precision machine

tools [3] and so on for the rapid develop of nanotechnology.

These stages have the advantages of the high stiffness and

fast response time through employing piezoelectric actuators

and flexure-hinge-guided mechanisms. [4]. However, the in-

herent hysteresis nonlinearities and vibrations caused by the

lightly damped resonant dynamics of these stages limit the

improvement of the tracking performance [5].

To handle the hysteresis nonlinearity, model-based feed-

forward control methods are the most common approaches

via constructing inverse hysteresis models, such as Prandtl-

Ishlinskii model [6], Bouc- Wen model [7] and Maxwell re-

sistive capacitor model [8]. It should be noted that lots of pa-

rameters should be identified to improve the modeling accu-

racy. On the other hand, some approaches without hysteresis

modeling have been proposed by treating the hysteresis as an

input disturbance to simplify the controller implementation.

[9–12].

However, as the the motion speed increasing, the perfor-

mance is degraded severely for the lightly damped modes.

Traditionally, the built-in integral or proportional-integral

(PI) controllers are commonly used in commercial piezo-

electric nanopositioning stages for the ease of implementa-

tion, but the closed-loop bandwidth is restricted within 2%

of the first resonance frequency of the stages [1]. Therefore,

many damping controllers [13] as well as modern controller,

like linear quadratic Gaussian (LQG) control [14] have been
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proposed to impart substantial damping to improve the track-

ing speed and precision. Because of the fundamental alge-

braic restrictions in feedback, these standalone methods may

not meet the required performance, such as errors caused by

phase lag.

It should be noted that the periodic trajectory is commonly

used in many applications, especially for the lateral motion

of nanopositioning stage in AFMs [1, 5]. To cope with the

issues in this motion process, it is natural to utilize repetitive

control (RC) to achieve required performance as a learning

type controller. The main benefit of this controller lies in that

it can provide infinite gains at the fundamental frequency as

well as its harmonics of the reference or disturbance based

on internal model principle [15]. Compared with another

learning-type controller, iterative learning control (ILC), RC

does not need to reset to the initial position after each it-

eration, which simplifies the practical implementation [16].

However, although conventional RC can deal with periodic

reference or disturbance, the error at non-periodic frequency

is amplified because of waterbed effect. In [17], a dual-

stage RC has been proposed to reduce the magnitude of non-

periodic frequency of the sensitivity transfer function of the

close-loop system via cascading conventional RC with odd-

harmonic RC, which requires calculating parameters of both

the RCs and the inverse hysteresis model. Besides, modified

repetitive control [18] and odd-harmonic repetitive control

[19] were proposed to tracking triangular signals through

treating hysteresis as periodic disturbances. However, the

main downside of these approaches lie in that they have not

improved the ability to suppress non-periodic disturbance,

which are common in piezoelectric nanopositioning stages

stemmed by hysteresis, sensor noise, mechanical shocks or

external environment.

In the perspective of this aspect, disturbance-observer-

based control is a popular method to eliminate unexpected

disturbance and model uncertainties [20]. Among these,
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Fig. 1: The experimental setup of the piezoelectric nanoposi-

tioning stage. (a) Experimental platform. (b) Block diagram

of control system.

the extended state observer (ESO) is an alternative method

to estimate the disturbances by treating them as state vari-

ables. However, for non-minimum phase (NMP) systems is

a challenging for traditional ESO. In [21, 22], model-assisted

extended state observer (MESO) was proposed to estimate

the state variables and disturbances simultaneously with the

merits of a faster convergence rate and estimation accuracy.

This paper is motivated to achieve high precision motion

for piezoelectric nanopositioning stages with periodic refer-

ence under disturbances. Although RC can improve refer-

ence tracking performance, it is sensitive to unexpected dis-

turbances that do not match with the frequency of reference.

In this paper, a MESO based RC is proposed, where MESO

is utilized to estimate as well as compensate disturbances and

the estimated state variables are also used to designed state

feedback based RC for a NMP system with disturbances.

The rest of the paper is organized as follows. The system

description is showed in Section 2. The controller design is

presented in Section 3. Section 4 demonstrates the experi-

ments on a piezoelectric nanopositioning stage and compar-

isons of the results Section 5 gives the conclusions.

2 System Description

2.1 Experimental Setup
The experimental setup is showed in Fig. 1. A piezoelec-

tric nanopositioning stage P-561.3CD is developed to eval-

uate the performance. The control input voltage is gener-
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Fig. 2: Frequency response of identified and measured

model with sine-sweep input.

ated by 16-bit digital to analog converters (DACs) via the

data acquisition card PCI 6289 and subsequently amplified

by a piezo amplifier module E-503.00 for the stage. The

output position normalized and read via a sensor monitor E-

509.C3A is passed to the data acquisition card PCI 6289 by

18-bit analog to digital converters (ADCs). The overall con-

trol system is built in Simulink Real-Time environment on

the development PC, and executed real-time on the target

PC. In this paper, the sample frequency of the system is set

to 5 kHz.

2.2 System Identification
In order to identify the linear dynamic model of the piezo-

electric nanopositioning stage without load on it, a sine-

sweep input with a constant low amplitude between 0.1 Hz

and 500 Hz is applied to the x axis. It should be noted that

a low amplitude voltage was used to excite the system to

avoid distortion from hysteresis nonlinearity. Through being

discretized via zero-order holder (ZOH) method, the nomi-

nal linear discrete transfer function Pn(z) with the forward

time-shift operator z can be identified as

Pn(z) =
0.012z4 − 0.053z3 + 0.09z2 − 0.07z + 0.0207

z5 − 4.64z4 + 8.71z3 − 8.25z2 + 3.95z − 0.76
(1)

The identified and measured frequency responses are plot-

ted in Fig.2, which indicates that Eq.1 describes the dynam-

ics of the stage sufficiently accurately and it contains non-

minimum phase zeros. It is clear that the first resonant fre-

quency is 210 Hz from Fig.2, which limits the motion within

a low speed when implementing the built-in feedback con-

troller.

3 Controller Design

3.1 Model-Assisted Extended State Observer
Considering a single-inputsingle-output (SISO) NMP sys-

tem and taking into account the disturbances, the state-space

description of the above system can be written as

{
xp(k + 1) = Apxp(k) +Bp(u(k) + d(k))

yp(k) = Cpxp(k)
(2)

6901

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 06,2022 at 02:47:26 UTC from IEEE Xplore.  Restrictions apply. 



where xp(k) = [x1(k), x2(k), ..., xn(k)]
T is the state vector

of the system and n is the order of Eq.1. u(k) and yp(k) are

the input and output signals of the system. Ap, Bp, Cp are

the state, input, and output matrices with proper dimensions

respectively. d(k) is presented as an unknown combination

of the system states and disturbances, such as hysteresis and

external signals. Through extending the ‘total disturbance’

as an additional state, the augmented state space model of

Eq.2 can be expressed as{
x(k + 1) = Aex(k) +Beu(k) +Bdh(k)

y(k) = Cpx(k)
(3)

where

Ae =

[
Ap Bp

0 0

]
(n+1)×(n+1)

(4)

Be =
[
Bp 0

]T
(n+1)×1

(5)

Ce =
[
Cp 0

]1×(n+1)
(6)

Bd =
[
0 1

]T
(n+1)×1

(7)

and x(k) = [x1(k), x2(k), ..., xn+1(k)]
T, xn+1(k) = d(k),

h(k) = d(k) − d(k − 1). To estimate the disturbances and

states of the system, the MESO that is incorporated with

model information for NMP system is given as{
x̂(k + 1) = Aex̂(k) +Beu(k) + Lo(ŷ(k)− y(k))

ŷ(k) = Cex̂(k)
(8)

where x̂(k) is the estimated state vector of system Eq.3, and

Lo = [l1, l2, ..., ln+1]
T is the observer gain.

Through compensating the estimated disturbances for the

control action,

u(k) = u0(k)− x̂n+1(k) (9)

where u0(k) is the control action of RC calculated in the

following section. The actual system can be behaved as

y(k) = Pn(z)(u0(k)− x̂n+1(k) + d(k)) ≈ Pnu0(k) (10)

It is clear that the disturbances can be eliminated from the

disturbed system to make the system acts as the identified

plant with selecting proper observer gain.

To tune the observer gain, the desired characteristic equa-

tion in Eq.8 is given as

Θ(z) = |zI − (Ae − LoCe)| = (z − βo)
n+1 (11)

Via implementing the Ackerman formula [22], the observer

gain is obtained as

Lo = Θ(Ae)

⎡
⎢⎢⎢⎢⎢⎢⎣

CT
e

CT
e A

T
e

.

.

.
CT

e (A
T
e )

n

⎤
⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
.
.
.
1

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

It should be noted that a trade-off between the anticipated

performance of MESO and its robustness against plant un-

certainties or disturbances can be adjusted by designing βo.

v(k) w(k)
+

+

z-N

Fig. 3: The basic block of RC to generate periodic signal.

3.2 MESO based Repetitive Control
RC is an effect control algorithm to facilitate performance

with repetitive reference or disturbance based on internal

model principle. For a discrete conventional RC, a signal

generator zN/(1-z−N), where N is the number of points per

period of the reference or disturbance, should be contained

in the feedback loop. However, the method magnifies the un-

desired gain at other frequencies. For precision motion, the

non-periodic disturbance can be obvious so that the tracking

performance is deteriorated significantly. In this paper, the

MESO based Repetitive Control (MESORC) is proposed to

compensate undesired disturbances.

To generate a discrete-time periodic signal of length N ,

the basis block of RC is demonstrated in Fig.3, which can be

expressed by the state-space model as{
xrc(k + 1) = Arcxrc(k) +Brcv(k)

w(k) = Crcxrc(k)
(13)

where

Arc =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
1 0 · · · 0

⎤
⎥⎥⎥⎦
N×N

(14)

Brc =
[
0 1

]T
N×1

(15)

Crc =
[
1 0

]
1×N

(16)

v(k) and w(k) are the input and output of the block respec-

tively.

Being different the method designed in frequency domain

[18, 19], a time-domain method based on state feedback [23]

is used in this paper, which has the advantages that no inver-

sion of the modal so that the calculation is simplified.

The proposed control scheme is given in Fig.4. Therefore,

the control input of RC is expressed as

u0 = Krcxrc(k) +Kfbx̂(k) (17)

where xrc(k) and x̂p(k) are the state vector of Eq.13 and

the plant respectively. Krc and Kfb are the state feedback

matrices for the internal model and the plant, respectively,

which is to be determined following. Based on that, Fig.4

has the following equivalent realization,[
xrc(k + 1)
x̂p(k + 1)

]
=

[
Arc −BrcCp

0 Ap

] [
xrc(k)
x̂p(k)

]
+[

0
Bp

]
+
[
Krc Kfb

] [ xrc(k)
x̂p(k)

]
(18)

To obtain the feedback gains, a linear quadratic regulator

(LQR) method is selected to regulate the states and thereby
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drive the error to zero. The cost function is given by

J =

∞∑
k=0

{
σ(k)T

[
Q1 0
0 Q2

]
σ(k) + u0(k)

TRu0(k)

}
(19)

where Q1 and Q2 are symmetric positive definite weighting

matrices on the states with σ(k) = [xrc(k), x̂p(k)]
T and R is

a symmetric positive definite weighting matrix on the control

effort. Therefore, the Eq.18 can be rewritten as⎧⎪⎨
⎪⎩
σ(k + 1) =

[
Arc −BrcCp

0 Ap

]
σ(k) +

[
0
Bp

]
u0(k)

u0(k) =
[
Krc Kfb

]
σ(k)

(20)

The above equations can be solved in MATLAB via function

dlqr. Overall, the control force of the proposed method is

calculated as

u(k) = Krcxrc(k) +Kfbx̂(k)− x̂n+1(k) (21)

The main difference of the proposed method and the ap-

proach in [23] lies in that a MESO is combined in the control

scheme to estimate as well as compensate disturbances and

the estimated state variables are also used to designed state

feedback based RC for a NMP system under undesired dis-

turbances.

4 Comparative Experiments

In this section, controller implementation and comparative

experiments are demonstrated to verify the performance of

the proposed method. For the implementation of MESORC,

Q1 = 1200000,Q2 = 1, R = 0.001 are selected and the

observer gain βo is determined as 0.696, which results in

Lo = [−3352.2− 1442.1− 1456.7− 610.45.488]T (22)

Furthermore, three controllers, proportional plus derivative

controller (PI), RC, and MESORC, have been developed for

comparisons.

4.1 Suppression of Hysteresis
In this paper, the hysteresis nonlinearity is treated as a low

frequency external disturbance without building hysteresis

modeling for simple implementation. Experimental results

of hysteresis curves with different controllers are displayed
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Fig. 5: Experimental results of hysteresis suppression with

different controllers.

in Fig.5 when 1 Hz triangular wave with 10 μm peak-to-

peak amplitude is injected into x axis. For the open-loop

tracking, the relative maximal error (ermax) is 20.130%,

which exhibit obvious hysteresis nonlinearity. The tradi-

tional PI controller can suppress hysteresis partly with ermax

of 1.883%. The RC and MESORC have the similar perfor-

mance with 0.173% and 0.133%, respectively because the

hysteresis nonlinearity behaves periodic errors for periodic

triangular waves, which can be compensated by both. The

above results demonstrate that the hysteresis is mitigated

substantially via implementation the proposed method.

4.2 High Precision Tracking with Disturbances
In order to validate the tracking performance of the pro-

posed method, the triangular waves widely used in AFMs

as references of the fast motion axis for raster scanning are

performed on the piezoelectric nanopositioning stage.

4.2.1 Delta Disturbance

The tracking performance of the proposed controller is

tested with triangular waves with a maximum 10 μm peak-
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Fig. 6: Experimental results of 40 Hz triangular wave track-

ing with delta disturbance at 0.3s. (a) Tracking results.

(b)Tracking error. (c) Zoomed-in view of the tracking error.
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disturbance at 0.3s.

to-peak amplitude at 40 Hz. A delta disturbance is injected

into the system at 0.3s. Fig.6 shows the tracking perfor-

mance with three different controller. It is clear that PI

controller exhibit the worst performance for its lowest band-

width to tracking triangular signals with high-order harmon-

ics with root-mean-square errors (erms) and maximal errors

(emax) of 3.775 μm and 6.069 μm respectively. For both

RC and MESORC, the errors are convergent after 0.13s and

the erms and emax are 0.006 μm and 0.014 μm respectively.

Experimental results of emax versus period is given in Fig.7.

After injecting the delta disturbance, the error peaks of RC

are -0.15μm and 0.09 μm, while those of ESORC are -0.04

μm and 0.03 μm, which reduce 73.33% and 66.67%, respec-

tively. It is also clear that at the 13th period, the emax are

0.150 μm and 0.048 μm respectively, which verified the pro-

posed method can compensate delta disturbance effectively.

4.2.2 Chirp Disturbance

The effectiveness of the proposed method to suppress non-

periodic disturbance is tested by input an amplitude 0.5 μm

chirp signal with frequencies varying from 0.01 Hz to 20

Hz that is defined as a time-varying signal on the 40 Hz tri-

angular reference. The tracking results as well as steady-

state tracking errors are given in Fig. 8 and the statistical
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Fig. 8: Experimental results of 40 Hz triangular wave track-

ing with chirp disturbance. (a) Tracking results. (b)Tracking

error. (c) Zoomed-in view of the steady-state tracking error.

10 20 30 40 50

Frequency(Hz)

0

0.01

0.02

0.03

M
ag

n
it

u
d
e

RC MESORC

Fig. 9: Spectrum of steady-state errors with chirp distur-

bance.

results of steady-state errors are listed in Tab. 1. Similar

to previous results, PI controller’s performance is the worst

with erms of 3.759 μm and emax of 6.179 μm respectively.

Compared with RC , MESORC can cope with non-periodic

disturbances effectively, as is showed in Fig. 8. The erms

and emax with the proposed controller reduce 40.98% (from

0.061 μm to 0.036 μm) and 41.57% (from 0.089 μm to 0.052

μm) respectively with respect to the condition with RC. The

spectrum of steady-state errors with chirp disturbances is

demonstrated in Fig. 9. It is evident that MESORC can

compensated errors at those frequencies effectively in com-

parison with standalone RC. The estimated disturbance of

MESORC is also plotted in Fig. 10, which verifies the chirp

disturbance is estimated accurately so that MESORC can

achieve better performance. Overall, errors caused by both

periodic and non-periodic disturbance can be suppressed sig-

nificantly with the proposed method.

5 Conclusions

In this paper, a composite control scheme MESORC is

proposed to achieve high precision motion for piezoelec-

tric nanopositioning stages with periodic reference even un-
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Table 1: Statistical results of steady-state errors with differ-

ent controller under chirp disturbance

Controller erms emax

PI 3.759 μm 6.179 μm

RC 0.061 μm 0.089 μm

MESORC 0.036 μm 0.052 μm
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)

Acutal disturbance Estimated disturbance

Fig. 10: Experimental results of compensation on chirp dis-

turbance. (a) Actual disturbance . (b) Estimated disturbance

der unexpected disturbance. The hysteresis nonlinearity

is treated as low-frequency disturbance to avoid hysteresis

modeling and simplify controller implementation and the

proposed method is developed in time domain. The MESO

is utilized to handle with the NMP property of the system

and estimated the state variables and disturbances simultane-

ously. Based on the estimated results, a state feedback based

RC is develop to compensate periodic errors. To validate

the performance, the proposed method is also performed on

a piezoelectric nanopositioning stage. Experimental results

show that the proposed method can suppress low frequency

hysteresis effectively and achieve the best performance with

the triangular waves references up to 40 Hz with delta and

chirp disturbances of on the stage through comparing with

various controllers.
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