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Abstract:
The rapid development and applications of precision motion systems pose a great challenge on tracking performance improve-

ment to complete various industrial or scientific tasks. In this paper, an iterative learning enhanced integral terminal sliding mode
control (IL-ITSMC) is developed to further enhance the performance of such systems under repetitive trajectory and disturbance.
For the generally used second-order model in precision motion systems, an integral terminal sliding surface is utilized to improve
the steady-state performance and robustness to unexpected disturbance. A novel reaching law is also designed to realize the
finite-time convergence of the sliding surface. In addition, an iterative learning law is proposed based on the sliding surface
to compensate the repetitive term through updating the feedforward control input iteratively. The stability in time domain and
convergence in iterative domain are proven theoretically based on the well-known Lyapunov theory, respectively. The simulation
results on a pizeo-actuated stage with hysteresis nonlinearity demonstrate that the proposed IL-ITSMC achieves the best track-
ing performance through comparisons, and the convergence speed is improved significantly in comparison with ITSMC with
traditional P-type ILC (PIL-ITSMC) for a 10 Hz sinusoidal repetitive trajectory.
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1 Introduction

Precision motion systems play a vital role in modern in-
dustrial and scientific fields [1], where various motion sys-
tems are utilized to arrive the desired points or track specific
trajectories. Among these, piezoelectric-actuated devices
have been widely designed and used dedicated to achieve
nanometer or sub-nanometer precision [2]. However, the in-
herent nonlinearities, such as hysteresis and friction in such
systems deteriorate the overall performances significantly
[3],[4]. Hence, a well-designed controller could make a great
improvement on the tracking precision.

The compensation of nonlinearities can be mitigated by
the developed inverse hysteresis or friction models [4],[5].
Although various mathematical models are constructed to
describe the nonlinearities, the accurate compensation needs
to identify lots of parameters and the processes are time-
consuming in the view of practical implementation. In order
to avoid the complex identification, the feedback controllers
can be utilized to enhance the disturbance rejection ability
by treating the nonlinearities as input disturbances [6],[7].

The robust control technology can provide the significant
improvement of tracking performance and disturbance sup-
pression. Sliding mode control (SMC) is one of the ef-
fective and simple methodologies through driving the slid-
ing surface to the origin with strong robustness to uncer-
tainties and disturbances [8],[9]. The conventional sliding
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(UMMTP-2020-01).

surfaces are proportional-derivative (PD) or proportional-
integral-derivative (PID) types, which can only realize con-
vergence with infinite time. In order to increase the conver-
gence speed, the nonlinear terminal sliding surface that con-
tains fractional-order term of error is developed to realize
finite-time convergence [10],[11]. Furthermore, to further
improve the tracking performance, the integral term should
be included in the control scheme [12]. The integral type
sliding surface can obtain better steady-state performance,
fast response, eliminate the reaching phase and smooth the
control law [13]. However, the key disadvantage of SMC
is the phenomenon of high-frequency oscillation due to the
switching term in the control law. To retain closed-loop sta-
bility, the assigned large switching gain will generate large
and chattering control force that may even damage the actua-
tor. Moreover, although SMC can track arbitrary trajectories,
the tracking precision is still limited by its pure feedback
scheme, which requires the integration with the feedforward
control to pursue better performance.

In some applications, such as lithography machine [14],
atomic force microscopy [15], the trajectory is repetitive
for the motion systems. Therefore, iterative learning con-
trol (ILC) is a natural solution to further improve the pre-
cision. In conventional ILC, the tracking errors are com-
pensated by learning from the previous iterations and updat-
ing the control signal for the next iteration [16],[17]. Based
on the previous cycle information, the control input can be
calculated by either the norm-optimal method [18] or the
frequency-domain approach [19]. Inversion-based ILC in
frequency domain is a popular method for practical imple-
mentation with the merits of lower complexity and fast con-
vergence [20]. However, an accurate model should be ob-
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Fig. 1: A diagram for the mathematical model of precision
motion systems.

tained or identified in order to achieve sufficient precision.
It should be noted that P-type or PD-type ILC can avoid ac-
curate modeling, but the convergence rate is low so that lots
of iterations should be conducted on the plant. Furthermore,
the non-repetitive disturbance cannot be compensated by the
updated ILC signal, which is commonly in piezoelectric-
actuated device, like hysteresis and friction depended on the
system states. Therefore, the suppression on such distur-
bance should be also taken into consideration when design-
ing ILC.

Motivated by aforementioned important issues, an itera-
tive learning enhanced integral terminal sliding mode con-
trol (IL-ITSMC) is proposed for precision motion systems
suffering from repetitive disturbance and nonlinearities. An
integral terminal sliding surface is used to achieve better
performance and finite-time convergence, and a sliding sur-
face based iterative learning law is developed to estimate
and compensate the repetitive disturbances so that the chat-
tering is alleviated for a small switching gain. The stabil-
ity in time-domain and convergence in iterative domain are
proven theoretically based on the well-known Lyapunov the-
ory, respectively. Furthermore, the simulations on a pizeo-
actuated stage with hysteresis nonlinearity are conducted to
demonstrate the performance improvement in comparison
with integral terminal sliding mode control (ITSMC) and
ITSMC with traditional P-type ILC (PIL-ITSMC). Being
different from the conventional ILC using tracking error to
update control input, the sliding surface is used in this pa-
per, and due to the integration with ITSMC, the impact of
non-repetitive error is reduced significantly so that the con-
vergence speed is also improved.

The rest of this paper is structured as follows. Model de-
scription and assumptions are presented Section 2. The de-
tailed design and stability of the controller are given in Sec-
tion 3. The simulation results are shown in Section 4, and
Section 5 gives the conclusion.

2 Preliminaries

In this paper, a commonly used single-input-single-output
(SISO) second-order system is utilized to describe the preci-
sion motion systems [11],[12], which is given by

mẍ(t) + bẋ(t) + kx(t) = hu(t) + f(t) + d(t), (1)

where x(t) is output position, ẋ(t) and ẍ(t) are the velocity
and acceleration. m, b, k are the effective mass, damping and
stiffness coefficients. The input is denoted as u(t) which is
driven by the electromechanical ratio h. f(t) and d(t) are
the repetitive and non-repetitive disturbances, respectively.
The diagram for the mathematical model of precision motion
systems is demonstrated in Fig. 1.

Assumption 1: The desired position xd(t) and disturbance
f(t) are repetitive on a finite time interval [0, T ], i.e.

xd(t) = xd,i(t) = xd,i+1(t), f(t) = fi(t) = fi+1(t), (2)

where i ∈ {1, 2, 3...,K} indicates the iterative number with
maximal iteration K. Therefore, xd,i(t) and fi(t) suffer
from the identical initial conditions for every iteration.

Assumption 2: The term d(t) is bounded during all the
iterations and satisfies the following conditions,

|di(t)| ≤ D (3)

In addition, the following lemmas will be useful for the
controller design.

Lemma 1: (see [21]) The origin of the following system is
a globally finite-time-stable equilibrium:{

ẋ1 = x2

ẋ2 = −k2sgn(x2)|x2|γ − k1sgn(x1)|x1|
γ

2−γ
, (4)

where k1, k2 are positive constants, chosen such that the
polynomial r2 + k2r + k1 is Hurwitz, and 0 < γ < 1.

Lemma 2: (see [22]) An extended Lyapunov description
V of finite-time stability can be given with the form of fast
terminal sliding mode as

V̇ + a1V + a2V
a3 ≤ 0, a1 > 0, a2 > 0, 0 < a3 < 1 (5)

and the settling time with initial state V0 can be given by

tr ≤
1

a1(1− a3)
ln
a1V

1−a3
0 + a2
a2

(6)

3 Iterative Learning Enhanced Integral Terminal
Sliding Mode Control

3.1 Controller Design
The goal in this paper is to achieve the precision track-

ing of the system (1), i.e. to minimize the tracking error
ei(x) = xi(t) − xd(t) through iterations. Firstly, we define
the following integral terminal sliding surface at iteration i
as

si(t) =ėi(t) +

∫ t

0

k2sgn(ėi(τ))|ėi(τ)|γ+

k1sgn(ei(τ))|ei(τ)|
γ

2−γ dτ.

(7)

It should be noted that although the sliding manifold con-
tains the switching term sgn(·), the sliding surface si(t) is
continuous and differentiable. Thus, the derivative of si(t)
with respect to time t yields

ṡi(t) =ëi(t) + k2sgn(ėi(t))|ėi(t)|γ+

k1sgn(ei(t))|ei(t)|
γ

2−γ .
(8)

With the equation ëi(t) = ẍd − ẍi(t) and (1), through
making ṡi(t) = 0 and neglecting unknown term di(t), the
equivalent control input is calculated as

ueqi =
1

h
(bẋi(t) + kxi(t)) +

m

h
(ẍd−

k2sgn(ėi(t))|ėi(t)|γ − k1sgn(ei(t))|ei(t)|
γ

2−γ ).

(9)
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Furthermore, in order to achieve fast convergence to the slid-
ing surface and retain robustness to disturbance di(t), the
following reaching law is designed in this paper as

uswi (t) =− 1

h
vi(t) = − 1

h

(
α1si(t)+

α2sgn(si(t))|si(t)|p + kssgn(si(t))
) (10)

where α1, α2, ks, and 0 < p < 1 are positive constants.
Besides, the repetitive disturbance fi(t) is estimated and

compensated by the following update law as

uili (t) =− 1

h
f̂i(t)

f̂i(t) =f̂i−1(t) +
(
β1si(t)+

β2sgn(si(t))|si(t)|p−1 + β3sgn(si(t))
) (11)

where β1, β2, β3 are positive constants, and f̂i(t) is the es-
timated repetitive disturbance. Therefore, the proposed IL-
ITSMC is given by

ui(t) = ueqi (t) + uili (t) + uswi (t). (12)

It is evident that the proposed method utilizes the sliding
surface to update the iterative learning law so that the repeti-
tive part in si(t), including repetitive errors and disturbance
can be compensated.

3.2 Stability and Convergence Analysis
The stability and convergence analysis are given in this

section. In what follows, the time variable t is omitted for
brief to simplify the writing of the equations, and the integral
symbol is expressed briefly as

∫ t
0
X(τ) dτ =

∫
X .

Theorem 1 (Stability in Time Domain): For the system de-
scribed by (1) with the control law (12), the sliding function
si as well as error ei will converge to zero in finite time if
the parameter ks is satisfied by

ks ≥ |f − f̂i + di| (13)

Proof: The Lyapunov function candidate is given as

V tdi =
1

2
s2i , (14)

and its derivative with respect to time is calculated as

V̇ tdi = siṡi. (15)

Substituting the control law into (8) yields

ṡi =
1

m
(hui − bẋi − kxi + fi + di)− ẍd+

k2sgn(ėi)|ėi|γ + k1sgn(ei)|ei|
γ

2−γ

=
1

m

(
− f̂i + fi + di + vi

)
.

(16)

Taking (16) into (15), we have

V̇ tdi =
1

m
si(−f̂i + fi + di + vi)

=
1

m
[si(−f̂i + fi + di)− ks|si|]−

1

m
(α1s

2
i + α2|si|p+1).

(17)

From the condition (13) and Lyapunov function (14), it is
obtained that

V̇ tdi +
2α1

m
V tdi +

√
2α2

m
(V tdi )

p+1
2 ≤ 0. (18)

Therefore, according to Lemma 2, the sliding surface will
converge to the origin in finite time as

tr ≤
m

α1(1− p)
ln

2α1(V tdi (0))
1−p
2 +

√
2α2√

2α2

. (19)

After the time tr, si will converge to zero so that ṡi → 0.
Therefore, with Lemma 1, the error is globally finite-time-
stable to the equilibrium point ei = 0. The proof is com-
pleted. �

From the above analysis, it is concluded that the stability
in the time domain is determined by the iteration approxi-
mation error f̃i = f − f̂i. Next, the convergence in iterative
domain is given.

Theorem 2 (Convergence in Iterative Domain): For the
system described by (1) with the control law (12), it is
guaranteed that the system output errors will asymptotically
converge to zero over [0, T ] when the iteration number ap-
proaches infinity if ks > D.

Proof: The Lyapunov function candidate in the ith itera-
tion is selected as

Vi = V 1
i + V 2

i + V 3
i + V 4

i , (20)

where
V 1
i =

1

2
mβ1s

2
i , V

2
i =

β2
p
|si|p,

V 3
i =β3|si|, V 4

i =
1

2

∫
f̃2i .

(21)

(i) The difference of V 1
i between i and i − 1 iteration is

deduced as

∆V 1
i =

1

2
mβ1s

2
i −

1

2
mβ1s

2
i−1

= β1

∫
si(−f̂i + f + di + vi)−

1

2
mβ1s

2
i−1.

(22)

According to the control law, we have

∆V 1
i =

∫
si(f̃i + di + vi)−

m

2
β1s

2
i−1

=β1

∫
sif̃i + β1

∫
sidi + β1

∫
si(−α1si−

α2sgn(si)|si|p − kssgn(si))−
m

2
β1s

2
i−1

=β1

∫
sif̃i + β1

∫
(sidi − α1β1s

2
i−

α2β1|si|p+1)− ksβ1
∫
|si| −

m

2
β1s

2
i−1.

(23)

(ii) The difference of V 2
i between i and i − 1 iteration is

deduced as

∆V 2
i =

β2
p
|si|p −

β2
p
|si−1|p. (24)

It should be noted that the following equation holds,

d

dt
|si|p = p|si|p−1sgn(si)ṡi. (25)
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Therefore, the equation (24) becomes

∆V 2
i =β2

∫
|si|p−1sgn(si)ṡi − p−1β2|si1 |p

=β2

∫
|si|p−1sgn(si)(f̃i + di + vi)− p−1β2|si|p

=β2

∫
|si|p−1sgn(si)f̃i + β2

∫
|si|p−1sgn(si)

(di − kssgn(si))− β2
∫

(α1|si|p + α2|si|2p−1)−

p−1β2|si1 |p.
(26)

(iii) The difference of V 3
i between i and i − 1 iteration is

deduced as

∆V 3
i =β3|si| − β3|si−1|

=β3

∫
sgn(si)ṡi − β3|si−1|

=β3

∫
sgn(si)(f̃i + di + vi)− β3|si−1|

=β3

∫
sgn(si)f̃i + β3

∫
sgn(si)(di − kssgn(si))−

β3

∫
(−α1|si|+ α2|si|p+1)− β3|si−1|.

(27)
(iv) The difference of V 4

i between i and i − 1 iteration is
deduced as

∆V 4
i =

1

2

∫
(f̃2i − f̃2i−1). (28)

According to Assumption 1, the following equation is ob-
tained that

(f̃2i − f̃2i−1) =(f − f̂i)2 − (f − f̂i−1)2

=(f − f̂i)T (f − f̂i)− (f − f̂i−1)T (f − f̂i−1)

=(f̂i−1 − f̂i)(2(f − f̂i) + (f̂i − f̂i−1))

=(f̂i − f̂i−1)(2f̂i − 2f − f̂i + f̂i−1)

=2(f̂i − f̂i−1)(f̂i − f)−

(f̂i − f̂i−1)(f̂i − f̂i−1)
(29)

Taking it into (28) yields

∆V 4
i =

∫
(f̂i − f̂i−1)(f̂i − f)−

1

2

∫ (
β1si + β2sgn(si)|si|p + β3sgn(si)

)2
=

∫ (
β1si + β2sgn(si)|si|p + β3sgn(si)

)
f̃i−

1

2

∫ (
β1si + β2sgn(si)|si|p + β3sgn(si)

)2
=− β1

∫
sif̃i − β2

∫
sgn(si)|si|pf̃i−

β3

∫
sgn(si)f̃i −

1

2

∫ (
β1si + β2sgn(si)|si|p+

β3sgn(si)
)2
.

(30)

Table 1: Model Parameters of the Precision Motion System
Parameter Value

m 1.8× 10−3

b 3.3× 10−3

k 1.1639× 10−3

ψ 2.4373× 10−5

h1 0.1947

h2 3.3626

h3 −2.8526

Based on the above results, the difference of the Lyapunov
function Vi is calculated as

∆Vi =∆V 1
i + ∆V 2

i + ∆V 3
i + ∆V 4

i

≤− β1
∫

(−sidi + ks|si|)− β2
∫
|si|p−1sgn(si)

(−di + kssgn(si))− β3
∫

sgn(si)(−di + kssgn(si)).

(31)
It is indicated that if ks > D is satisfied, ∆Vi < 0 is
achieved. This result concludes that the Lyapunov function
Vi is convergent. Thus, the sliding surface will be driven to
zero during iteration so that ei is minimized. The proof of
Theorem 2 is completed. �

Remark 1: From Theorem 1 and Theorem 2, it is clear that
the chattering phenomenon is alleviated because the repeti-
tive term is compensated by the iterative learning law so that
the switching gain can be chosen relatively smaller than tra-
ditional ITSMC.

Remark 2: The integration of ILC makes further improve-
ment of pure feedback controllers for repetitive trajectory
and disturbance. Moreover, the proposed method also makes
use of the robustness to non-repetitive disturbance of ITSMC
to minimize the impact on ILC so that the convergence speed
is improved significantly.

4 Simulation Results

In this section, a piezo-actuated nanopositioning system is
used to test the performance of the proposed control method.
The model with hysteresis described by Bouc-Wen model is
given as

mẍ(t) + bẋ(t) + kx(t) = k[ψu(t)−H(t)],

Ḣ(t) = h1ψu̇(t)− h2|u̇(t)|H(t)− h3u̇(t)|H(t)|,
(32)

where the system parameters are listed in Tab. 1.
To illustrate the performance of the proposed IL-ITSMC,

another two controllers are developed for comparison
through simulations. The first controller is the baseline
ITSMC, the control law is given as

u1(t) = ueq(t) + usw(t). (33)

It is evident that the controller is conducted without the iter-
ative process. The second controller is the commonly used
P-type ILC with ITSMC, i.e. PIL-ITSMC, the control input
is calculated by the following equations,

u2(t) = ueqi (t) + uswi (t) + upili (t), (34)

where the P-type update law is given by

upili (t) = upili−1(t)− kpei(t). (35)
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Table 2: Control Parameters of the Controllers
Parameter Value Parameter Value

k1 2.5× 107 ks 0.1

k2 200 β1 1.8

γ 0.99 β2 0.001

α1 0.1 β3 0.001

α2 0.1 kp 0.1

p 0.9

Dynamic
of  Plant

Control
Law 

Sliding
Function+

-

Iterative
Learning

Law
Memory

Fig. 2: Block diagram of the proposed control system.
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Fig. 3: Tracking errors of PIL-ITSMC for 10 iterations.

All the parameters of the controllers are demonstrated in
Tab. 2. It should be noted that the parameters of ITSMC are
the same for the three controllers. Furthermore, because the
iterative leaning law in IL-ITSMC only contains the propor-
tional coefficients of the sliding surface, the P-type ILC is
adopted in this paper for a fair comparison. The block dia-
gram of the proposed control system is illustrated in Fig. 2.

In the following simulations, the reference trajectory is
set as xd(t) = 20sin(2π · 10 · t) with a sampling rate 2000
Hz, and 10 iterations are conducted for PIL-ITSMC and IL-
ITSMC. It should be noted that the result of first iteration is
got with the pure ITSMC.

The tracking errors for the different iterations of the con-
trollers are plotted in Fig. 3 and Fig. 4, respectively. The
first iteration, i.e. ITSMC presents the worst performance,
and then the tracking errors of PIL-ITSMC and IL-ITSMC
are reduced during the following iterations. The root-mean-
square error (erms) and maximal error (emax) during itera-
tions are given in Fig. 5, and the calculated values are listed
in Tab. 3. The erms and emax with ITSMC are 0.3501 µm
and 0.4576 µm, respectively. For the PIL-ITSMC, the track-
ing errors are reduced gradually from the 2nd to 10th iter-
ation, and finally achieve the erms and emax at 0.0386 µm
and 0.0776 µm, respectively. In contrast, the proposed IL-
ITSMC reaches the erms and emax at 0.0284 µm and 0.0713

-0.4

0

-0.2

0

100.1

0.2

8

0.4

Time/s

0.2

Itera
tion

6
0.3 4

20.4

E
rr
o
r/
μ
m

Fig. 4: Tracking errors of IL-ITSMC for 10 iterations.

Table 3: Tracking Performance of Different Controllers
Iteration PIL-ITSMC(µm) IL-ITSMC(µm)

1
erms 0.3501 erms 0.3501
emax 0.4576 emax 0.4576

2
erms 0.2639 erms 0.0284
emax 0.3778 emax 0.0713

4
erms 0.1542 erms 0.0286
emax 0.2745 emax 0.0760

6
erms 0.0875 erms 0.0283
emax 0.1738 emax 0.0692

8
erms 0.0541 erms 0.0286
emax 0.1113 emax 0.0763

10
erms 0.0386 erms 0.0285
emax 0.0776 emax 0.0678

1 2 3 4 5 6 7 8 9 10
Iteration

0.1

0.2

0.3

e r
m
s/
μ
m

1 2 3 4 5 6 7 8 9 10
Iteration

0.1

0.2

0.3

0.4

e m
a
x/
μ
m

PIL-ITSMC

IL-ITSMC

Fig. 5: erms and emax of different controllers along itera-
tions.

µm at the 2nd iteration, and retains the converged state to
the 10th iteration with the erms and emax at 0.0285 µm and
0.0378 µm, respectively. It can be concluded that the pro-
posed IL-ITSMC can improve the convergence speed than
the traditional P-type ILC based controller. This advantage
could reduce the experimental iterations significantly. The
tracking performance of the three controllers at the 10th it-
eration are demonstrated in Fig. 6. It is evident that although
the nonlinearity exists in the motion system, the tracking per-
formance is enhanced by the proposed method, achieving the
best precision.

5 Conclusions

In this paper, an iterative learning enhanced integral ter-
minal sliding mode control is proposed for the precision mo-
tion systems suffering from various disturbances. For the
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Fig. 6: Tracking performance of different controllers at the
10th iteration.

repetitive trajectory tracking commonly used in such sys-
tems, the proposed method combines the advantages of ILC
and SMC-based controller to further improve the tracking
performance. In order to enhance the steady-state perfor-
mance and robustness to undesired disturbance, an integral
terminal sliding surface and a fast reaching law are utilized
to design the feedback controller. For the repetitive term
caused by repetitive error and disturbance, a sliding surface
based iterative learning law is integrated into the overall con-
trol scheme. Both the stability in time domain and conver-
gence in iteration domain are proven by the Lyapunov the-
ory. In addition, the simulations on a piezo-actuated nanopo-
sitioning system with hysteresis nonlinearities are conducted
through implementing three controllers. The results show
that the proposed method achieves the erms and emax at
0.0285 µm and 0.0378 µm, respectively, i.e. the best per-
formance, and obtains a faster convergence speed than PIL-
ITSMC.
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