
2022 IEEE 11th Data Driven Control and Learning Systems Conference 

August 5-7, 2022, Emeishan, China 

Discrete-Time Integral Terminal Sliding Mode based Repetitive 

Control for Periodic Motion Tracking 

Zhao Feng", Jie Ling”, Yayi Shen? 

1. Department of Electrical and Computer Engineering, University of Macau, Macao, P. R. China 
E-mail: zhaofeng@um.edu.mo 

2. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China 

E-mail: meejling @ nuaa.edu.cn;yayi.shen @nuaa.edu.cn 

Abstract: 
The high precision position tracking in many industrial and scientific devices is vital for various tasks. Among these, periodic 

signals are commonly used in the condition that the references are given or planned in advance. In this paper, a discrete-time 

integral terminal sliding mode based repetitive control (DTITSMRC) is developed for periodic motion tracking. The discrete- 
time integral terminal sliding surface is employed for a fast convergence, and the repetitive control law with this sliding surface 

is integrated into the control scheme to further improve the performance through learning the information of the previous period. 
The quasi sliding mode band (QSMB) constrained for any initial state and the finite-time steps to QSMB with DTITSMRC are 

proven respectively. The simulation results on a discrete-time system demonstrate the effectiveness on periodic motion tracking 
for various signals. 
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1 Introduction 

Many industrial and scientific devices require precision 

position tracking to complete the anticipated tasks. Typi- 

cally, the high-speed and precision tracking of linear motors 

is vital for the computer numerical control (CNC) micro ma- 

chining [1, 2]; and the tracking precision of the piezoelectric 

nanopositioning stage mostly determines the imaging qual- 

ity of the samples in a scanning probe microscope (SPM) [3- 

5]. To achieve the desired objective, various control methods 

could provide effective solutions for performance improve- 

ments. 

Sliding mode control (SMC) is a nonlinear control method 

to achieve the robustness to parameter uncertainties and dis- 

turbance by enforcing the error states to the sliding surface, 

and then maintaining it around by the switching term [6, 7]. 

The linear sliding surface with linear operations on the states 

is widely used but with infinite-time convergence to zero er- 

rors [8]. To improve the convergence speed, the terminal 

SMC with fractional-order term in the sliding surface is de- 

veloped to achieve the finite-time stability [9, 10]. In gen- 

eral, SMC can be designed based on the continuous-time 

domain resulting in that the high-order states of the system 

should be measured or estimated through extra sensors or 

delicately designed observers, especially for the high-order 

SMC [11]. However, the actual implementation of controller 

is generally realized on the digital control system. Thus, it is 

natural to design the controller on the discrete-time domain. 

In [12], a second-order discrete-time terminal SMC was pro- 

posed for the piezoelectric nanopositioning stage, and fur- 

ther a chattering-free discrete-time SMC was developed in 

[13]. It should be pointed out that the above methods could 

track any trajectory but without considering the property of 

the references. 
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In many applications, the reference signals are given or 

planned in advance. With the knowledge of references, 

learning based control could further improve the perfor- 

mance. Iterative learning control (ILC) concentrates on the 

repetitive process in iteration domain, which requires the 

same initial condition of the reference, and takes several tri- 

als to converge to the desired performance [14]. Alterna- 

tively, periodic trajectories are also commonly tracked such 

as the scanning motion of SPM, where some signals are si- 

nusoidal waves or triangular waves [4]. Thus, repetitive con- 

trol (RC) utilizing the information of references’ period is 

perfect for such motion patterns. In general, RCs are imple- 

mented by the parallel form with well-designed L-filter, Q- 

filter [3, 15]. Although continuous-time RC was proposed 

in [16] for nanopositioning, the discrete-time RC is more 

widely used and suitable for implementing on digital control 

systems. However, according to the internal model princi- 

ple, the non-periodic errors will be amplified by the RC, in- 

dicating that the traditional RCs are lack of robustness to the 

non-periodic uncertainties so that the tracking performance 

could be deteriorated significantly under such conditions. 

Motivated by above-mentioned discussions, a discrete- 

time integral terminal sliding mode based repetitive con- 

trol (DTITSMRC) is proposed dedicating to the precision 

tracking of periodic motion. In this control scheme, a 

discrete-time integral terminal sliding function is utilized to 

achieve better steady-state performance and faster conver- 

gence. Then, the RC is combined into the method by vir- 

tual of the information of previous period. The quasi slid- 

ing mode band (QSMB) constrained for any initial state and 

the finite-time steps to QSMB with proposed DTITSMRC 

are proven respectively. Finally, the simulation cases for 

periodic signals’ tracking are conducted to verify the ef- 

fectiveness of the proposed controller. Through integrat- 

ing the robustness to unexpected disturbances of SMC with 

the learning ability of RC for periodic signals, the proposed 

DTITSMRC takes both the advantages of SMC and RC. 

Moreover, only the input and output data are employed to 
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implement the proposed controller without the need of extra 

sensors or state observers. 

2 Preliminaries 

Considering a discrete-time single input single output 

(SISO) system, the input-output equation is given as 

n m 

Yk = S° QiYR—i + S° biuk—i + Pr, (1) 
i=l i=l 

where yx € R, ux € R, and py € R are the measured 

output, control force, and external disturbance, respectively. 

The symbol & € Nj is denoted as the sampling point. a; € 

R and 6; € R are the identified and known parameters of the 

plant, and n, m are positive integers with n > m. 

In order to facilitate the controller design, the state-space 

representation of (1) can be described as 

Xpyy = AX, + Buy +WQy, + Pr (2) 

Yk = CXp , 

where 

0 1 0 

A= : : : € R'*”, 

0 0 1 

an —An-1 ay 

T nx B=[0 -- 0 bi] eR™!, (3) 

0 0 0 

W= : : E Rrx(m—1) 

0 0 

bm bm=1 be 

C= [0 0 1]¢R™, 
+ 

Lk-1 xx €R”™!?, 

T _ 
Uk—-2 U1] € Rm Dx1 

0 pl ER. 

It can be observed from the above equations that the out- 

put y, is equal to the last term of the state variables X;, 

so that the (4) can be calculated by the measured histori- 

cal output data [12]. Therefore, no state observer is needed 

when implementing the proposed controller. Furthermore, 

rp € Ry is periodic in this paper. Therefore, we have 

Th =Tk-N, (4) 

where NV € N, is the number of sample points per period of 

the signal of a digital control system. 

With the dynamics (2), the objective of this paper is to 

track the desired periodic trajectory 7; at the presence of 

complex and unknown disturbance px. 
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3 Discrete-Time Integral Terminal Sliding Mode 
based Repetitive Controller Design 

3.1 Definition of Sliding Mode Function 

SMC is an effective methodology to improve the robust- 

ness of a plant suffering from external disturbance so that the 

performance could be improved [17]. The tracking error is 

defined as 

(5) 

Here, a discrete-time integral terminal sliding function is 

used to drive e, onto a specified sliding surface, defined as 

€k = Yk —Tk- 

Sk = C1en + CoEK-1, (6) 

and the integral term is given by 

k 

E, = S° sig*e, = Ex_1 + sig*ex, (7) 

i=0 

where cy > 0,co2 > 0, andO0 < a < 1, sig®(ex) 

sgn(e,) - |ex|*. It should be noted that the fractional order 
a of e, makes a faster convergence rate in comparison with 

a conventional linear sliding mode function [18]. Further- 

more, the usage of the term sig(-) avoids the singular values 

when ex < 0. 

3.2 Design of DTITSMRC Scheme 

Based on the sliding mode function, the followings give 

the definitions of quasi sliding mode (QSM) and its reaching 

condition, which are helpful for the controller design. 

Definition 1(see [19, 20]). For a discrete-time plant, the sys- 

tem is said to achieve the QSM for any Vk > k* if the sliding 

mode function satisfies 

Is(k)| < A, (8) 

where A is the width where the QSM happens, i.e., QSM 

band (QSMB). 

Definition 2 (see [18, 21]). The reaching condition to QSM 

in the vicinity A of the sliding mode function if the following 

conditions hold: 

8h > A> -A<s(k+1) < 8p, 

5h < —-A > SE < Sp41 <A, 

Is¢] <A |spaa| <A. 
(9) 

Furthermore, it is natural that the disturbance is bounded 

[22, 23]. Hence, the following assumption is employed. 

Assumption 1. The disturbance term p; can be decomposed 

as 

(10) 

and the increment disturbance D,, is bounded by |p,| < 4, 
where 6 is a positive constant. 

Theorem 1. For the discrete-time system (2) with the peri- 

odic reference r,, if the proposed DTITSMRC law is given 

as 

Pk = Pk-N + Dx, 

Up =Up—w + (cxCB)~"[(1 — p) sp — esgn(sp) — coER— 

cy CA(X;, _ X_N) + CCW Qzp_n— 

Srt1-Nn + CoER_n], 
(1) 
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where 0 < p < 1, and the switching gain c; satisfies 

E 
—>d6>0, 
Cl 

(12) 

the sliding function will be constrained by the QSMB for any 

initial states, which is given as 

Aa ed 
  a (13) 

Proof of Theorem 1. According to the sliding mode func- 

tion (6), s,41 can be expressed as 

Sk+1 = C1€K41 + CoE,. (14) 

With e441 = Ye+1 — Tk+1, it is obtained that 

Seo = C1(Yr¢1 — Tet) + CER. (15) 

Combining with the state-space representation (1), we have 

Sk41 =C1CXpq1 — Cirepi + CoE, 

=cC(AX, + Bur + WQz+ Px) — C1ITk+1 

+ cok. 

(16) 

Substituting the control law (11) into (16), it is derived 

that 

Sk41 =C1C(AXp_n + Bup_nw +WQp_-nw + Pr) -— 1 

rrpi—n + CERN — Sp4i-w + (1 — p)Se- 

esgn(Sx) 
=O CXg41-Nn — Cirk41—-N + CoE KN — Sk41-N+ 

(1 — p)sz — esgn(sp) + c1CPp 

=C1(Yer1-n —Try1—Nn) + CoER_N — Skpi-n+ 

(1 — p)sx — esgn(s,) + 1CP, 

=Sk41-N — Sk41-N + (1 — p) 8x — Esgn(SK) + CLD; 
=(1— p)sx — esgn(sk) + C1D,; 

(17) 
For s; outside the QSMB, the reaching condition [24] is 

equivalent to 

In the following, two cases are considered, i.e., the posi- 

tive and negative values of s;. 

Case I: If 5s, > 0, according to (17) and (18), we have 

Combining with the bounded |p,| < 4, it is derived that 

(Sk+1 — $%)sgn(sp) <0 
. 1 

(Sr+1 + 5%)sgn(sz) > 0 (18) 

—ps, —E+ cp, <0 
. 19 

(2—p)s, —E+ cD, >0 a?) 

  

  

—p8p —E—C16 <0 (20) 

(2—p)s, —€ +6 >0° 

Therefore, we have 

e+c,6 
Sp > 

21 
S E— C16 ( ) 

8 k 2—p 
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Case 2: If s, < 0, it obtains that 

f 
Then, we can obtain that 

—ps, te+c16d >0 
. 22 

2—p)s,p +e—c16 <0 (22) 

  
E+rC, 6 

< 

(23) 
  

According to (12), we can obtain that 

E—c,6 > 0. (24) 

From the above, we can conclude that the sliding function 

of the closed-loop system with the proposed control law will 

converge to the QSMB region: 

    
Ee C10 Ee C10 

- < . 25 I= p Sk < ST 0 (25) 

Thus, 5 

Isk] << A= OE. (26) 
2-p 

This completes the proof. a 

Theorem 2. With the control law (11), the sliding mode 

function will first enter into QSMB within k* steps, which is 

given as 

* 2(e— 16 
k = [losi_p7 ( 19) AT 2— pyiplsol ke ~ 10) (27) 

where the operator |-| is the nearest integer to -, and so is 

the initial value of the sliding function. Furthermore, s; will 

never escape the QSMB after k* steps. 

Proof of Theorem 2. Firstly, we calculate the convergence 

step k*. 

Case 1: If 59 > 0, according to (17), we can obtain that 

8, =(1— p)s9 —E + 1D 

82 =(1— p)s1 —€+ C1), 

=(1— p)?so — (1 — p)(€ — c1Pp) —E + 1D 
(28) 

> 

(1 —p)** fe = exd5). sk =(1— p)* 80 — 
j Il 3° 

Combining with the bounded |p,| < 6, it is derived that 

> 

(1— py fe — e145] 8h <(1- p)*so - 

j 

=(1— p)"so — (e — c16) 

Il 3° 

1-(1- 
p 

p)* f= C16 

2-p 
(29) 

Assuming k® is the exact time cross the QSMB, it can be 

derived that 

1-(1—p)*  e-e6 ( p) + C1 

p 
— kt = — (1 =p)!" 50 = (€- 618) — 
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2(e _ C10) kt 

Co = Br ppstesasy = 
Thus, 

* t 2(e _ C10) 
ke = [k | +1= 081» SF) (pap te Tess) +1 

(31) 
Case 2: If s9 < 0, we can obtain that 

k-1 

sp =(1—p)*so + S01 = p)* 1 [e + ex] 
j=0 

k-1 

>(1—p)*so+ D3 pS 4e—erd]) 
j=0 

  

1—(1—p)* 
=(1 _ p)* 80 + (€ _ eg) 

Similarity, it is derived that 

—(1—9)* _ 
(1 —p)F so + (eco) LEE _ £548 3) 

p —p 

. 1—(1-p)*  e-16 
— k — = — ee ——___ (1 ~ py ($0) = (@ = e13) ~— P+ SE 

(34) 
Thus, 

k* =|k'} +1 

2(€ — c10) 1 (35) 
= L081 oF —y(p(amo) Fe cd) 

Therefore, k* is given as (27). 

Next, we will give the proof of s; remaining in QSMB 

after k* steps. 

Case I: If so > 0, it follows that 

  

  

  

  

  

  

  

—¢,6 0 < sy < (36) 
—p 

According to (17), we can obtain that 

Sk*41 — Sk* =PSkx — E+ CD, 

E— C16 _ 
2—p p-—E+Cip, 

— 16 (37) 
eo p-—e+c06 
2-p 

=~ oe —e6)-—2 <0 = E C1 2 p : 

Therefore, it is obtained that 

€—c46 
Sheu < ——. (38) 

2-p 
Case 2: If so < 0, it follows that 

— 46 HAT cg. <0. (39) 
2-p 

Similarly, we can deduce that 

Sk*41 — Sk* =PSkx +E+CID, 

E— C10 — 
>—?p 2 _ +E+CiPp 

E— C16 (40) 
>-p +e-—c,6 

2-p 
1-— 

=2(e _ od) > 0. 
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k 

Control Law Linear Sliding Surface 

rm SISO System 
Zz 

  

Fig. 1: Block diagram of the proposed DTITSMRC control 

scheme. 

Therefore, it is obtained that 

E—c10 
  Skx41 > (41) 
2-p- 

Therefore, |5,,*41| < A. It can be deduced that spx4ar < 
A for any positive integer 1/7. This completes the proof. 

3.3, Overall Control Law 

To alleviate the discontinuity of the sign function sgn(s;,), 

a boundary layer technique presented in [25] is applied, 

where the discontinuous function is replaced by a saturation 

function defined as 

sen(sz), if |s.| > @ 
sat(s,) = Sk if |se| <4 (42) 

o % — % 

where the positive constant ¢ is the boundary layer thick- 

ness. Hence, the overall control law is given by 

Up =Up—nw + (cxCB)~"[(1 — p)sp — esat(sy) — CoE 

cCA(X, _ Xp_n) + aCWQk_en — Sk41-N+ 

C2 E k— N| : 

(43) 
The overall control scheme is demonstrated in Fig. 1. 

4 Simulation Case 

In this section, a second-order discrete-time SISO system 

is employed for the simulations with the state-space repre- 

sentation as 

0 1 0 
A= 0 7405 1 oss] B= o.orso] ’ 

0 (44) 

c=([0 1.W= .aaro] 

The sampling rate is set as 2000 Hz. Moreover, a discrete- 

time sliding mode control (DTSMC) with the sliding func- 

tion (7) is developed for comparisons, and the control law is 

given as, 

up =(c1CB)~'[(1 — p)s, — esgn(s,) — coE, — cxCAX;, 

— o CWQr + cirk+1]- 
(45) 

The parameters in DTITSMRC are set as c; = 0.007, c2 = 

1.2,a = 0.99,¢ = 0.01, = 0.9, and the parameters of 

DTSMC are same as DTITSMRC for a fair comparison. 

In the first case, the sinusoidal wave with frequency 10 Hz 

and amplitude 5 jm without disturbance p; is tested for 
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Time/s 

—— so Ref — — — DTSMC DTITSMRC   

Fig. 2: Tracking results 10 Hz sinusoidal wave w/o px. (a) 

Reference signal tracking performance. (b) Tracking errors. 

Table 1: Tracking Performance of Different Controllers at 

Steady State 
  

  

  

  

          
  

  

  

        

Case DTSMC(um) DTITSMRC(um) 

Sinusoidal Wave | €rms | 0.2625 | €rms 0.0069 

w/0 pr €maz | 0.3800 | emaz 0.0199 

Triangular Wave | €rms | 0.2877 | erms 0.0418 

w/0 Dr €maz | 0.3670 | emaz 0.0917 

Sinusoidal Wave | €rms | 0.2627 | erms 0.0081 

w/ Dk €maz_|_0.3897 | e€maz 0.0249 

(a) at 

& 
= 

82h 
> 

° 

0 
0 0.5 1 1.5 2 

Time/s 

(b)9 5 [ T T T ‘1 

S he ty ~y be a ee oe 

= 

3 0 

& eee vob dvudob 

-0.5 1 1 1 1 

0 0.5 1 1.5 2 

Time/s 

—— so Ref — — —DTSMC DTITSMRC   

Fig. 3: Tracking results 10 Hz triangular wave w/o px. (a) 

Reference signal tracking performance. (b) Tracking errors. 

DTSMC and DTITSMRC, respectively. The tracking results 

are plotted in Fig. 2, and the root-mean square error (€;ms) 

and maximal error (€;¢x) calculated at the steady state, i.e., 

the last period, are recorded in Table. 1. During the learn- 

ing phase of DTITSMRC, the error is larger than that of 

DTSMC; while after 1s, the performance of DTITSMRC is 

improved significantly due to the learning of stored informa- 

tion. At the steady state, the ems and Emax are 0.0069 um 

and 0.0199 jum, respectively in comparison with these of 

0.2625 jum and 0.3800 jum for DTSMC. 

The triangular wave with frequency 10 Hz and amplitude 

5 jm without disturbance p; is also as the periodic reference 

signal as shown in Fig. 3. To avoid the discontinuity at the 

  

  

— — — Sinusoidal wave 

  Triangular wave 1 

-100       0 05 1 15 2 
Time/s 

Fig. 4: Sliding function of DTITSMRC w/o px. 

  

  

  

(a) T T T 

4 a 

g 
= 
5.2 
D> 

6 
0 

0 0.5 1 1.5 2 
Time/s 

(b) 1 

g 
= 0 
°o 

5 
wo 

-1     

  

  

Time/s 
-—---— Ref — — — DTSMC DTITSMRC   

Fig. 5: Tracking results 10 Hz sinusoidal wave w/ px. (a) 

Reference signal tracking performance. (b) Tracking errors. 

  

  

  

  

207 — — —DTSMC 
DTITSMRC 

-40 

Q -60 
n 
Ay 

-80 

-100 

010 20 30 100 150 200     
Frequency/Hz 

Fig. 6: Power spectral density (PSD) of errors at 10 Hz sinu- 

soidal wave w/ px, for different controllers. 

corner, this reference is passed by a low-pass filter. Simi- 

larly to the results of sinusoidal wave, DTITSMRC achieves 

the best performance after several cycles’ learning. The €;-m5 

and €maz are 0.0418 jzm and 0.0917 jum, respectively, which 

improves by 85.47% and 75.01% in contrast to DTSMC. The 

sliding mode function s; of DTITSMRC for sinusoidal and 

triangular waves are given in Fig. 4, showing the conver- 

gence of s;, after 1s through several learning cycles. 

Finally, the disturbance p, = 0.01sin(2z7 - 20k) is injected 
into the system to test the robustness of the controller to ex- 

ternal disturbance. With the 10 Hz sinusoidal wave as the 

reference signal, the tracking results of the two controllers 
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are demonstrated in Fig. 5. It is clear that DTIITSMRC 

gets the better performance at the steady state with €;m, of 

0.0081 wm and e€;,¢2 Of 0.0249 um. For a clear comparison, 

the power spectral density (PSD) of errors for the two con- 

trollers are plotted in Fig. 6. It can be observed that DTISMC 

generates high peaks at 10 Hz caused by the reference signal 

and 20 Hz caused by external disturbance, while DTITSMC 

could compensate these errors effectively with lower PSD at 

these regions. 

5 Conclusions 

In this paper, a control scheme called DTITSMRC is de- 

veloped to achieve the precision tracking of periodic trajec- 

tories for the discrete-time SISO system. The fast conver- 

gence and robustness to unexpected disturbance are guaran- 

teed by the integral terminal sliding function, and a learn- 

ing based repetitive control is integrated into the scheme to 

further improve the performance through learning the infor- 

mation of the previous period. The constrained QSMB and 

finite-time steps to this band are also proven, respectively. 

The controller is realized only by using the measured his- 

torical output data and calculated control input without any 

state observer. Various simulation cases are conducted on 

a second-order plant. The results show that the proposed 

DTITSMRC presents better tracking performance for sinu- 

soidal and triangular waves, even subjecting to external dis- 

turbance in comparison with DTSMC. 

It should be noted that the method in this paper requires 

that the number of sample points per period N should be an 

integer. Thus, the fractional-order technique may be further 

utilized to realize the precision tracking of signals with arbi- 

trary frequencies. 
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