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Abstract. Cross-coupling effect severely hinder fast and accurate tracking for
parallel piezo nanopositioning stages. In this paper, a data-driven feedforward
decoupling filter (DDFDF) is proposed to reduce the cross-coupling caused
errors. Traditional control methods for coupled system could achieve good
performance on the premise that the dynamic model is accurate and no
non-minimum phase zeros exist. The proposed method is totally data-driven
with the advantage of no need for accurate identified model and model structure
by Gauss-Newton gradient-based algorithm. The DDFDF for eliminating
cross-coupling errors was verified on a 2-DOF coupled nanopositioning stage
through simulations. Results show the effectiveness of the proposed controller
by comparing with open-loop simulations and the well-designed feedback
controller.
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1 Introduction

The rapid development in nanoscience and nanotechnology has increased the urgent
demand for high-speed and high-performance nanopositioning systems [1]. The
emergence of flexure-guided, piezoelectric stack-actuated, compact and light nanopo-
sitioner that provides repeatable, reliable, and smooth motions meets the requirements
for these related applications, such as scanning probe microscopy (SPM) [2], atomic
force microscope (AFM) [3], micromanipulation system [4] and so on. There are two
kinds of configurations of piezo nanopositioning stage: serial and parallel [5]. For
serial-kinematic configuration, only one axis can achieve the high mechanical band-
width [6]. Parallel structures offer higher resonance frequencies and stiffness on all
axes. Therefore, parallel nanopositioning stages have been widely used in commercial
design [5].

For parallel nanopositioning stages, cross-coupling among axes inevitably appears
and becomes one of the main obstacles for achieving excellent servo performance,
especially at high scanning speed, which can be observed from the experiment data
presented in [7]. Many special mechanical structures have been designed to reduced
cross-coupling effect [8, 9], and the interactive effect can be suppressed significantly at
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low frequencies. However, during high-speed motion, the cross-coupling effect still
cannot be ignored as inertial effects, especially near the first resonant mode.

Various approaches were proposed to handle the problem. Multiple-input
multiple-output (MIMO) damping controllers using reference model matching
approach [10, 11] and mixed negative-imaginary and small-gain approach [12] have been
designed to damp the first resonant mode and minimize cross-coupling effect simulta-
neously. Yuen Kuan Yong [13] proposed a Ho controller design strategy for each axis
regarding the interactive effect as deterministic output disturbance based on the accurate
system modeling. To reduce dependence on model, some data-driven controllers using
errors obtained from measurement data have been implemented. In [14, 15], iterative
feedback tuning (IFT) has been proposed for industrial process control and virtual ref-
erence feedback tuning (VRFT) [16, 17] has been implemented to MIMO system with the
advantage of one-trial convergence. However, we should note that the controllers above
are MIMO feedback design. A more natural configuration would utilize feedforward
decoupling part and leave the single-input single-output (SISO) controller part intact.

To avoid feedback loop redundancy and simplify the control system, a feedforward
decoupling controller has been designed to compensate for vibration due to interaction
in hard disk drives at the cost of accurate modeling in [18]. However, if the plant has
non-minimum phase zeros, the controller may be unstable. Besides, the frequency-
domain characteristics encompass significant variation from machine-to-machine which
cannot be properly modelled. Therefore, we introduce the data-driven feedforward
decoupling filter with the advantage of no need for accurate modeling and plant
knowledge to suppress the cross-coupling effect. In this paper, the Gauss-Newton
algorithm [19] is used to obtain the coefficients of the finite impulse response
(FIR) filters by utilize the measurement data like IFT and VRFT. The DDFDF can
alleviate problems due to non-minimum phase zeros and the selection of model structure
[20] with the aim to provide the conditions that validate a SISO control approach in
coupled parallel piezo nanopositioning stage.

The rest of the paper is organized as follows. The cross-coupling effect problems
and control scheme are formulated in Sect. 2. The controllers design procedure,
including feedback controller, DDFDF are presented in Sect. 3. Simulation results and
comparison are presented in Sect. 4 and conclusions are given in Sect. 5.

2 Problem Formulation

In the section, we present the description of the cross-effect as well as the control
scheme for corresponding issue.

2.1 Dynamics Model

To simplify the presentation of the coupled parallel piezo nanopositioning stage, a
2 X 2 diagonal domain plant is considered in this paper, and described as
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Fig. 1. Dynamics model of a 2 DOFs coupled parallel system
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Figure 1 shows the internal relationship from input to output. Therefore, the cou-
pled parallel dynamics can be modeled as

xX(w) = Pa(jo)ux(w) + Py (jo)uy(o) (2)
(@) = Py (jo)uy(0) + P(jo)u(o) (3)

Where x(w), uy(w), y(®), uy(w) denote the Fourier transforms of x(r), u.(z), y(z)
and u, (1), respectively. Py (jo) presents the open-loop dynamics of system output x
due to the x axis input, and P, (jo) presents the open-loop, cross-coupling effect
dynamics under control input u,(¢). Similar definitions are for y axis. To simplify, @
and |w are tacitly omitted for conciseness. As we can see from (2) and (3), the output of
the individual axis depends on both the diagonal domain dynamics and the
cross-coupling dynamic, i.e. non-diagonal domain dynamics, especially at high
frequency.

2.2  Control Scheme

For cross-coupling systems, various decoupling feedback methods are proposed to
address interactive effect problems [21, 22]. Nevertheless, these existing decoupling
feedback control schemes are usually too complex to realize in practical applications,
and multi-intersected feedback paths also may render internal uncertainly. Therefore, a
common control configuration is a combination SISO feedback control with decou-
pling feedforward control. The SISO feedback part is to guarantee system robust
stability, while the decoupling feedforward part is to attenuate the cross-coupling effect
for excellent performance. Figure 2 depicts the configuration of the control system. D,
and D, are the decoupling feedforward controllers for x axis and y axis. The x axis
control input u, is obtained by subtracting feedback input ugp, from the decoupling
feedforward control input ugs, as described in Fig. 2
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Fig. 2. Configuration of SISO feedback control combined with decoupling feedforward control

Uy = Uppy — Ugpec (4)
The x axis output of the close-loop system can be deduced as
x = Tyry + ScPyylty — ScPrligp (5)
where T, S, are the complementary sensitivity function and sensitivity function, i.e.

P..C, 1

x = Y x — 6
1+ P, Cy 1+ P Cy (6)

Therefore, the error of x axis can be described as
ey = Sty — SyPyyty + ScPyligp (7)
Hence, the cross-coupling effect due to u, can be canceled if
—S Pty + SyPyltg = 0 (8)
from Eq. (8) the equation can be represented as

P
Ugpe = P—y uy (9)

Therefore, the decoupler of x and y axis is derived as

Py D_Q

D =— =
X Pﬁ? y va

(10)

Through the two decouplers, the parallel system is decoupled into two SISO
systems. However, we should note that if P,, or Py, has non-minimum phase zeros,
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D, or D, is unstable. Therefore, DDFDF is introduced to design the decouplers and a
Heo controller is implemented to retain robust stability.

3 Controllers Design

In this section, we review the Hoo controller design briefly. Then a DDFDF is proposed
to design the decouplers using the collected data breaking through the limit of accurate
modeling and non-minimum phase zeros.

3.1 Feedback Controller

In this paper, the Heo controller is designed with the advantage of performance, res-
olution, and robust to model uncertainty directly considered in the frequency domain
via appropriate weighting functions [23]. Now, we consider the Heo controller design
for x axis. Same is the design for y axis.
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Fig. 3. Ho design weighting functions
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In Heo design the goal is to optimize competing objectives of reference-to-error
sensitivity Sy, reference-to-output sensitivity 7, i.e. complementary sensitivity, and
reference-to-control sensitivity C,S, simultaneously. The controller C, is obtained
through an iterative design of weighting function to minimize

WsS,
Veeedback = || WrTx (11)
WV CxSx

where |||, is Hex norm. The weighting function Ws, Wy, Wy, which can be seen in
Fig. 3, penalize the error, output, and the controller output, respectively; these func-
tions are chosen properly for shaping and obtaining a required close loop transfer
function of the controlled system. The details on weighting functions design can be
found in [23].
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3.2 Data-Driven Feedforward Decoupling Filter Design

In this paper, we chose the FIR filter as the feedforward controllers because of its linear
characteristic, which is the essential condition for making the optimal problem convex.
The FIR filter structure is defined as

Dy(z) =p! +p'z +pl P+ - 4plz ije{xytandi £ (12)

With 7 is the filter order and p?, p¥, p¥, - - - p¥ are its coefficients. Because Eq. (12)
represents a numerator polynomial, it has the ability to create zeros inside the unit circle
that can approximating the inverse plant dynamics. All the poles located at the origin,
which makes the filter stable.

The data-driven feedforward decoupling filter is optimized by a Gauss-Newton
gradient-based algorithm. To compensate the cross-coupling errors, the coefficients of
FIR filter are obtained by minimizing the objection function. Herein, the objection
criterion is chosen as

J(k) = e(p") 2e(p") (13)

T
where e(p*) = [e(pk)fe(pk)g ] donates the cross-coupling errors with respect to the

coefficients to be optimized. 1 is a diagonal weight matrix. k refers to the iteration
number. The algorithm is to obtain the optimal coefficients that satisfies

pn = arg min J(k) (14)
P

The value of coefficients for each of control directions separately update by a
gradient-based algorithm, and the update law can be express as [14]

Pt =pt = RV (15)

P

Where R is a certain position definite matrix, i.e. Hessian matrix, and y donates the
step size. The gradient can be derived from object functions as

V| =2Ve(p*) Je(p") (16)

Herein, we chose the Gauss-Newton method is due to its high convergence rate an
accuracy. Therefore, the Hessian matrix can be described as

R =V(VJ|,) = 2Ve(p") iVe(p") (17)

Hence, by substituting (16) and (17), the update law (15) becomes
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P = ok (Ve AV e(pt)  Ve(p) re(pF) (18)

The update law can be seen as strictly data-driven. It requires only the error signal
e(k) and the gradient error matrix Ve which can be obtained from experiment data.
Because of the FIR filter coefficients appear affine in the error signals than only one
step is need to obtain the optimal set of coefficients from arbitrary initial conditions
[24]. To make the optimal method data-driven, the gradient

Ve(p) = [Ve(pp)Ve(py) - Ve(p,)] (19)

is obtained from perturbed-parameter experiment. The first-order Taylor series

expansion of the error e(p*) about the user-defined parameter perturbation difference
Api i.e.,

e(p* 1) = e(p*) + Vei(p) Api + O(Ap:)° (20)

Here e(p* *1) and e(p*) are the cross-coupling errors with the perturbation p; + Ap;
and p;, respectively. Hence, the resulting gradient approximation is given by

o et — e
el ~ g )

However, the numbers of experiment are large as the coefficient numbers increase
because the one experiment is need for each coefficient. To make the optimization
technique more suited for practical application, the choice of FIR filter structure is
critical. The structure Eq. (12) has a benefit of obtaining the gradient. Once the term
Veo(pk) is obtained, the whole gradient Ve(p*) can be calculated immediately since

the term Ve, (p*) is equal the term Vey(p*) by a delay of i sampling times, i.e.
Ve (p) = Veo(ph)z ™ (22)

Hence, only two experiments are made for each direction. This feature simplifies
the practical implementation of the algorithm. In summary, the follow procedure is
adopted to obtain the FIR filter coefficients.

Set the initial FIR filter coefficients p to pf = 0.

Execute a task and obtain the error signals e, from the time-intervals.

Perturb the coefficients p* with Apy, excuse the task, and store the signals e,, (pg“)
Use Eq. (21) compute the error gradient Ve, (p).

Apply the time delay Eq. (22) and get Ve, (p*).

Use Eq. (18) obtain the optimal coefficients of D,.

Repeat the 3 ~ 6 to calculate coefficients of D,,.

Nk W=
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4 Evaluation

The following section evaluates the DDFDF through simulation on a 2-DOF parallel
piezo nanopositioning stage. The proposed MFDF was verified via the elimination of
cross-coupling effect on y axis when triangle signals with difference frequencies were
excited to x axis from time domain and frequency domain.

4.1 System Description

A 2-DOF parallel piezo-actuated nanopositioning stage with a stroke of 100 pm X

100 um was used as the controlled objective. Each of the x and y direction is actuated
by a PZT and The displacement of each axis is detected by a capacitive sensor with the
close loop resolution of 10 nm. Because the structure of the nanopositioning stage is
symmetric, the frequency response of the system is also symmetric as described in
Fig. 4. It can be seen the cross coupling in non-diagonal plots are achieved from
—65 dB to —20 dB at low frequency (from 1 Hz to 70 Hz). However, the magnitude
tends to be positive with the increase of scan speed, which results in strong cross
coupling effect on tracking, especially at the resonant frequency of 123 Hz. This limits
the positioning accuracy of the stage. The normalized transfer function of the MIMO
system from the identification process is displayed in Eq. (23). When implementation
in simulation, the normalized model and controllers were discretized by Tustin method
with sampling interval of 0.0004 s.

146.65° +7.9x10%s* +9.8x10%s> +2.1x10'%5> 4 7.3x 105 4-9.4x10"7
5© +1009s° +3.8x100s% + 1.8 x 10953 +3.5x 101252 + 7.1 x 10145 + 9.4 x 1017
_ 104.15° —3.6x 10*s* +-8.9x 10753 —1.7x10"'s> + 8.2x103s—1.6x10*

56+ 100955 +3.8x1065% + 1.8x10%5% +3.5x 101252 + 7.1x 10145 +9.4x 107 (23)
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4.2 Suppression of Cross-Coupling Effect

To evaluate the effect of DDFDF for eliminating cross-coupling errors, triangle signals
with difference frequencies are input into x axis and the output data from y axis were
measured to obtain cross-coupling errors. Figure 5 shows the cross-coupling errors
with the 10 Hz, 20 Hz, 50 Hz and 80 Hz triangle input for y axis with the peak-to-peak
amplitude of 2 um. It can be observed that the cross-coupling errors increase with the
input frequencies increasing. At low frequency of 10 Hz, the RMS error is below
13 nm and the MAX error is below 35 nm. However, the errors with FB & DDFDF are
7 nm for RMS and 16 nm for MAX from 10 Hz to 50 Hz which verifies the effect of
MFDF to suppress cross-coupling errors. The RMS errors and MAX errors for y axis
were recorded in Table 1. We should note that at 40 Hz, the cross-coupling errors of
open-loop and FB are larger than 50 Hz because the resonant frequency of
non-diagonal term is 123 Hz, which is about twofold of fundamental frequency for the
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Fig. 4. Frequency responses of the stage. The resonant peak is 15.8 dB at 123 Hz for diagonal
frequency responses and 12.3 dB at 123 Hz for non-diagonal frequency responses.
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Fig. 5. Cross-coupling errors of y axis. (a) 10 Hz triangle. (b) 20 Hz triangle. (c) 40 Hz triangle.
(d) 50 Hz triangle.

40 Hz input. At higher frequency of 50 Hz, the proposed control strategy reduces the
RMS errors by 92.09 % (from 76.32 nm to 6.04 nm) and 76.74 % (from 25.97 nm to
6.04 nm) with respect to open-loop and FB, respectively.
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Fig. 6. Power spectrum of errors. (a) 10 Hz triangle. (b) 20 Hz triangle. (c) 40 Hz triangle.
(d) 50 Hz triangle

The power spectrums of errors are presented in Fig. 6. It can be seen that the power
with proposed controller are the lowest than others, although near the first resonant
frequency, which verifies the ability to suppress the cross-coupling effect.

Table 1. Cross-coupling errors of y axis

Controller Statistical errors(nm) | Triangle wave
10 Hz | 20 Hz | 40 Hz | 50 Hz
Open Loop |RMS 12.85 |25.19 | 167.00 | 76.32
MAX 34.80 | 62.59 | 338.31|197.84
FB RMS 3.13 | 7.56 | 23.14| 25.97
MAX 12.60 |22.21 | 62.47| 57.30
FB&DDFDF | RMS 1.01 | 2.95 592 6.04
MAX 227 | 6.37 | 15.53| 1541

5 Conclusions

In this paper, the data-driven feedforward decoupling filter was introduced to compensate
errors resulting from cross-coupling effects for coupled parallel piezo nanopositioning
stages. The coefficients of DDFDF were obtained by Gauss-Newton gradient-based
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algorithm with the superiority of no need for accurate identified model and model
structure. The simulations based on a parallel piezo nanopositioning stage show that
cross-coupling errors were suppressed significantly especially at high frequencies by
implementing DDFDF when input signals of one axis were triangle wave with different
frequencies.
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