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Abstract—To compensate the nonlinear effects of a 
nanopositioning stage and its model uncertainties, this paper 
presents a composite controller by integrating disturbance 
observer (DOB) and model prediction control (MPC). The 
nonlinearity and dynamic cross-coupling effects are treated as 
unknown disturbances to the system, and a DOB is used to 
partially estimate and compensate the disturbance to improved 
performance. A MPC is commonly used to track a reference signal, 
which minimizes the steady-state tracking error as well as 
increases the closed-loop bandwidth. Inspired by existing MPC 
schemes to improve the positioning performance of the piezo-
actuated stage, a two-input two-output (TITO) form of the MPC 
controller is designed in this work with the estimated residual 
error being used to modify the reference in real time for better 
performance. The novelty of the proposed TITO MPC lies not only 
the compensation for nonlinear effects but also the rejection of 
cross-coupling dynamics effects in a 2-DOF nanopositioning 
system. The effectiveness of the proposed controller is validated 
through experimental investigations on a commercial 
nanopositioner platform. Experimental results show that the 
proposed method can improve the tracking performance of the 
piezo-actuated stage, compared to the traditional MPC. 

Keywords—Piezo-actuated stage, nonlinearity compensation, 
disturbance observer, model prediction control 

I. INTRODUCTION 

Nanotechnology is the study on the control or manipulation 
of matter on an atomic and molecular scale, and nanopositioning 
is one key branch of nanotechnology [1]. Nanopositioning 
stages have been widely applied in many precision instruments, 
such as nanomanipulators, scanning probe microscopes (SPMs), 
atomic force microscopes (AFMs), which are usually designed 
as flexure-hinge-guided mechanisms driven by piezoelectric 
actuators (PEAs) with the merits of small size, high positioning 
resolution and quick frequency response [2]. The use of flexure 
hinges makes it possible to eliminate the friction and clearance 
issues that exist in a traditional mechanism. However, the 
voltage actuation is dominantly used in practical applications, 
resulting in nonlinearity, particularly hysteresis effect. The 

hysteresis effect increasing with the amplitude and frequency of 
reference signal can greatly degrade the positioning accuracy [3]. 
The widely used proportional–integral–derivative (PID) 
controller in industry cannot provide satisfactory performance 
[4]. It is necessary to design more effective controllers to cope 
with the nonlinearity for precise positioning and tracking.  There 
are various advanced control methods, such as robust resonant 
control (RRC) [5], iterative learning control (ILC) [6-8], 
adaptive control [9-10], repetitive control [11] and so on. The 
feedback-feedforward is integrated for control of a 2-DOF 
manipulation system in [12], while the data-based double-
feedforward controller is designed to deal with a coupled parallel 
stage in [13]. 

In some larger stroke applications, hysteresis strongly 
compromises the accuracy of positioning [14], and it is 
necessary to take hysteresis into consideration. There are usually 
two methods: the first one is to build a hysteresis model and 
design a compensation controller based on the hysteresis model; 
the second one is to design the robust controller by treating 
hysteresis as interference. Typically, the hysteresis is modeled, 
and the feedforward control is completed based on the inverse 
hysteresis model [15-16] or the direct hysteresis model [17-18]. 
Although these controllers based on hysteresis models are direct 
and effective, the modeling and parameters identification are 
complex and computationally intensive. On the other hand, by 
treating the nonlinearity (including hysteresis, creep and model 
uncertainty) as interference, the design process of the robust 
controller is simple and practical. Slide mode control (SMC) [19] 
and model prediction control (MPC) [20] have recently attracted 
considerable attention as applied in the control of 
nanopositioning systems, both of which are simple to be 
implemented based on the identified nominal model. 

As a variable structure control method, SMC is able to reject 
uncertainties and disturbances. However, chattering, caused by 
the discontinuous switching function in SMC, may excite the 
high-frequency resonant vibration, thereby degrading control 
performance and even damaging the actuators being controlled 
[21]. To solve this problem, in [22], a continuous integral 
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terminal third-order SMC is designed to completely eliminate 
the chattering effect. And in [23], a PID regulator replaces the 
discontinuous switching function to eliminate chattering. 
Continuous SMC is usually used to deal with a second-order 
system and the digital slide mode control (DSMC) can only 
apply to a minimum phase system and is sensitive to the initial 
position error and noise. Among these algorithms, MPC 
algorithm is popular and widely adopted in the industrial process 
control [24]. It has been successfully applied to compensate for 
hysteresis nonlinearity of PEAs [20]. MPC can control the non-
minimum system and deal with physical constraints in the 
generation of control actions. Compared to single-DOF 
nanopositioning systems, less research on the control of multi-
DOF nanopositioning stages has been reported. In [25] and [26], 
a MPC is designed for a multi-axis piezo system with the system 
described by linear time-invariant (LTI) model. If the 
disturbance and uncertainties can be completely or partially 
estimated, such estimations should greatly facilitate their 
compensation by means of control. In literature, the active 
disturbance rejection approaches are developed for improving 
control performance. Reference [27] presents the development 
of a disturbance-observer-based (DOB) SMC for a 3-DOF 
nanopositioning stage. The MPC with disturbance observer 
(DOB) is proposed to control the current of raymond mill, which 
is a system with large time delays [24]. It is confirmed that DOB 
combined with feedback control can improve control 
performance for multi-axis system. 

In reality, the challenge is that the identified nominal models 
of the commercially available multi-DOF nanopositioning 
stages are non-minimum phase. To raise to this challenge, this 
paper presents the development of a DOB-MPC for the 2-DOF 
piezo stage. Specifically, due to the imperfection of the DOB 
compensation, the tracking error including partial hysteresis and 
model uncertainties may exist. The residual error should be 
estimated and considered. This paper employs the difference 
value between the actual output and nominal model output to 
modify the reference in real time. 

The rest of this paper is organized as follows: The design of 
the control is shown in Section II. Section III provides the 
experiment setup and identification of the system transfer 
function, and Section IV presents the experiment results. Finally, 
the paper is concluded in Section V. 

II. DOB-MPC FOR THE 2-DOF NANOPOSITIONING STAGE 

Fig. 1 shows the control scheme of the DOB-SMC for the 2-
DOF nanopositioning stage. Specifically, the nonlinearity of the 
nanopositioning stage is estimated through the use of an 
observer and then compensated by means of the MPC with real-
time modified reference. 
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Fig. 1. Control scheme of the DOB-MPC for 2-DOF piezo system 

A. Design of the Disturbance Observer 

The block diagram of the standard DOB is shown in Fig. 2, 

where  P z  is the real plant to be controlled and  nP z  is the 

nominal model, and  Q z  is the low-pass filter. It can be seen 

that the procedure of the DOB closes a loop around the 
controlled plant to reject disturbances and force the input-output 
characteristics of this loop to approximate the nominal plant 

model.  1
nP z  is the approximate inverse of the nominal 

model. The zero-phase-error tracking controller (ZPETC) 
technique is used to obtain the approximate inverse by 
converting NMP zeros of the model into stable zeros of the 

approximate inverse.  P z  and  nP z  are chosen as diagonal 

transfer matrixes for the decoupling system. 
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Fig. 2. The block diagram of the DOB 

First, we write the dynamics of the system as in Eq. (1), 

partitioning  B z  into the polynomial  sB z  containing the 

stable (invertible) zeros and the polynomial  uB z  containing 

the unstable (noninvertible) zeros: 

  
 
 

   
 

s u

n

B z B z B z
P z

A z A z
   

The polynomial  uB z  contains m unstable zeros. Then, the 

polynomial  fB z  contains m stable zeros is obtained by 

reflecting the roots zi of  uB z  into the unit circle to 1/zi. 

According to the ZPETC, the inverse model is, 

  
   

 
1 f

n

s

A z B z
P z K

B z
   

   
2

11 |u zK B z   

where, K is scalar that compensates for losses in the DC gain. 
For convenience, the variate z is omitted in the following. 

It can be seen that 1
nP   is not causal. In this design, Q is 

specified as, 

 0
dQ Q z  

In which, 0Q  is a low-pass filter with the unit gain at low 

frequencies and the delay d is the relative order between the 
numerator and the denominator of 1

nP  . 
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This ensures that 1
0 nQ P   is causal and the input signal and 

the estimated disturbance are coincident. The output of the plant 
can be expressed as follows, 

  Iy P u d Pu d     

  1
n nu u QP y Qu       

B. MPC with Real-time Modified Reference 

The MPC acts as a feedback controller and is used to 
generate the manipulated control increment sequence at each 
sample time by minimizing the difference between the desired 
output and the predictive output. Only the first move is applied 
to the plant and this step is repeated for the next sampling 
instance. The proposed composite control is shown in Fig. 1. 

In this design, the nominal model of the plant is described by 
the state-space model as, 


     

   

1X k X k U k

y k X k

  


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Making, 


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     
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 

Eq. (7) can be rewritten as 


     

   
1

1
d d d d
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where, Xd(k+1) = [ΔX(k+1) y(k)], Ad, Bd, Cd are the augmented 

system matrices with 
0

d

 
  
 

A
A

CA I
, d

 
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 

B
B

CB
, 

 0d C I . 

The predictive output sequence in the matrix form is then 
derived as, 

  dY X k U  F Φ  

In which, 
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 
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
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 
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1

1c
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U

u k N

  
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   
 
 
    


. 

Np, Nc are the prediction horizon and the control horizon 
respectively. 

The DOB is designed based on the approximate inverse of 
the nominal model and the low-pass filter Q introduces the time 
delay d for the causality of the system. Partial disturbance still 
exists after the system with DOB. Considering the residual 
disturbance, the reference trajectory is modified in real time in 
the proposed method. The prediction model in MPC is the 
identified nominal model. The disturbance rejection 
performance is achieved without sacrificing the nominal 
tracking performance. 

Considering the difference between the actual output with 
DOB compensation control and nominal model output, the 
residual error can be estimated and used to modify the reference 
in real time. 

The residual disturbance, 

        f n cd k y k P k u k   

By assuming that the disturbance is slowly time-varying and 
bounded, then the future disturbance values sequence in 
prediction horizon is estimated by, 

      1 f fk d k d k       

The modified reference is derived as, 

      1 1 1sR k R k k      

where, 

     1| 2 | |
T

s d d d pR y k k y k k y k N k      , 

     1| 2 | |
T

m m m pR y k k y k k y k N k       

Using the aforementioned notations, the cost function for 
minimization can be expressed by, 

    
T T

Y UJ Y R W Y R U W U       

In which, WY and WU are the adjustable weight matrices. 

III. SYSTEM DESCRIPTION 

When the modeling of nonlinearity is not required, the 
system can be represented by the equivalent system in Fig. 3 
treating the hysteresis effect and model uncertainty as 
disturbance. The model of the piezo-actuated stage is shown in 
Fig. 3, where P represents the linear dynamics model. u(t), d(t), 
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y(t) are the input voltage, unmeasurable disturbance, and 
displacement output respectively. The controller can be 
designed and completed for the linear dynamics model easily. 

z
u(t) y(t)

d(t)

P
+ +

noise

 

Fig. 3. The model of a piezo-actuated stage 

A. Experimental Setup 

The experimental setup is developed and shown in Fig. 4. 
According to Fig. 4(a), the setup is composed of a three-axis 
nanopositioner (P-561.3CD), a dSPACE MicrolabBox, a piezo 
amplifier module (E-503.00, Physik Instrumente) with a fixed 
gain of 10, a sensor monitor (E-509.C3A, Physik Instrumente) 
and the host PC. The control input voltage range is (0-10 V). 
And the output voltage range is (0-10 V), which is normalized 
with respect to 0-100μm. Details about the signal flow refer to 
Fig. 4(b). The control algorithm is designed in 
MATLAB/Simulink block diagram on the host PC, and then 
downloaded and executed on the target dSPACE MicroLabBox 
in the real-time software environment of dSPACE ControlDesk. 
When conducting experiments, the x-axis and y-axis are adopted 
to implement the proposed controller and the sample rate is set 
to 10 kHz. 

(a) Experimental Setup

DAC 
Interface

ADC 
Interface

dSPACE
MicroLabBox

Piezo-actuated stage
(PI P-561.3CD)Amplifier Module

(PI E-503.00)

Host PC

PZT Servo Submodule
(PI E-509)

16-bit 
DAC

16-bit 
ADC

Piezo Amplifier 
Submodule

PZT Servo 
Submodule

dSPACE Real-Time

Plant

(b)

 

Fig. 4. The experimental setup of the piezo-actuated stage (a) Experimental 
platform (b) Block diagram of the signal flow 

B. System Identification 

Since only the nominal model is required in the proposed 
control design, the models are identified to describe the 
dynamics for x-axis and y-axis respectively. To obtain the model 
parameters, a sine-sweep input voltage with a constant 
amplitude of 200 mV between 0.1 Hz and 500 Hz is used as the 
input signal to both x-axis and y-axis. Notice that the low 
amplitude of the input voltage is used to excite the system for 
avoiding the effect of hysteresis nonlinearity. The input voltage 
and the output displacement data taken from the sensor are 
imported to MATLAB System Identification Toolbox to 
identify the models. The identified frequency response is shown 
in Fig. 5. 

 

Fig. 5. Bode plot of the identified linear dynamics model 

The positioning system can be described by the following 
equation: 


xx xy

yx yy

P P
P

P P

 
  
 

 

The discrete transfer functions of the x-axis and y-axis are, 
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2 2
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IV. EXPERIMENTS AND RESULTS 

To illustrate the nanopositioning performance of the 
proposed TITO DOB-MPC controller compared with the TITO 
MPC controller in the time domain, circle signals of different 
frequencies are applied, which means that sinusoidal signal and 
cosine signal are used for x-axis and y-axis respectively. The 
motion tracking of circle signals with the frequency at 5 Hz, 10 
Hz, and 20 Hz is tested respectively.  

TABLE I.  TRACKING ERROR BY RMS AND MAX OF THE MPC AND THE 

PROPOSED DOB-MPC 

Controller Frequency (Hz) 
x axis (μm) 
RMS / MAX 

y axis (μm) 
RMS / MAX 

MPC 

5 0.1743 / 0.2781 0.1799 / 0.3266 

10 0.3538 / 0.5683 0.3651 / 0.6207 

20 0.8354 / 1.7030 0.8273 / 2.7747 

DOB-MPC 

5 0.0686 / 0.1351 0.0661 / 0.1118 

10 0.1513 / 0.3199 0.1408 / 0.2669 

20 0.4921 / 1.0227 0.4324 / 1.1485 

For a clear presentation, Table 1 lists the value of RMS and 
MAX tracking errors with the MPC and the proposed DOB-
MPC controllers. Compare with the traditional MPC, it can be 
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observed that the proposed DOB-MPC controller achieves 
satisfactory performance when tracking signals at different 
frequencies. 

Fig. 6 shows the tracking performance with the amplitude at 
30 μm and the frequency at 5 Hz, and the performance of 
tracking circle contour is presented in Fig.7. The root mean 
square (RMS) value of the tracking error of x-axis with 
traditional MPC is 0.1743 μm, whereas the RMS error with the 
proposed DOB-MPC is 0.0686 μm, which is a 60.6% 
improvement over MPC. Due to the DOB, the two axis are 
decoupled. The similar improvement of tracking performance 
can be seen for y-axis. 

Reference MPC DOB-MPC  

 

Fig. 6. Comparison of tracking performance of circle signal with the frequency 
at 5 Hz: (a) x-axis displacement, (b) y-axis displacement, (c) x-axis error, (d) y-
axis error, (e)(f) control input for x and y axis 

 

Fig. 7. Tracking performance of circle contour with the frequency at 5 Hz 

Fig. 8 and Fig. 9 show the tracking performance with the 
amplitude at 30 μm and the frequency at 10 Hz. 

 

 

Reference MPC DOB-MPC  

 

Fig. 8. Comparison of tracking performance of circle signal with the frequency 
at 10 Hz: (a) x-axis displacement, (b) y-axis displacement, (c) x-axis error, (d) 
y-axis error, (e)(f) control input for x and y axis 

 

Fig. 9. Tracking performance of circle contour with the frequency at 10 Hz 

It is also worthy of noting that the proposed DOB-MPC 
scheme can provide better performance of tracking at different 
frequencies than traditional MPC, but the improvement effect at 
high frequency is not as good as that at low frequency. As the 
amplitude and frequency of the tracking signal increase, the 
disturbance can’t be assumed slowly time varying. According to 
the perturbation estimation technique, the disturbance is 
estimated by its one-step delayed value and is treated as a 
constant in prediction horizon, which is not enough accurate in 
applications for tracking signals of high frequency. And the 
performance is limited by the bandwidth of DOB. 

V. CONCLUSION 

This paper presents the development of a composite control 
for two input and two output piezo-actuated system. It enhances 
the performance of the MPC by adding a DOB and modifying 
the reference based on the residual disturbance. The DOB can 
observe and compensate the hysteresis nonlinearity and linear 
dynamic coupling at the same time. Due to the imperfection of 
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the DOB compensation, the residual error is used to modify the 
reference for better tracking performance. By using the proposed 
control frame, the nonlinearity and coupling between axes to be 
rejected by the feedback control is reduced and the control 
performance of the 2-DOF nanopositioning stage is greatly 
improved. 
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