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Abstract—In this paper, a neural network-based (NN-based)
integral sliding mode control approach is presented for a piezo-
electric ultrasonic motor. The precision motion performance
of the motor can be adversely affected in the presence of
nonlinearities including friction and disturbance, as well as pa-
rameters uncertainties. Integral sliding mode control is effective
in dealing with uncertainties and disturbances. To achieve better
performance on tracking desired motion trajectories, a neural
network structure with modified jump basis functions are used
to model and compensate the discontinuous friction in the motor
control systems. This structure can approximate friction with
high accuracy but require few NN nodes. Stability of the proposed
control strategy is analyzed. The simulation studies are provided
to demonstrate the precise tracking performance of the proposed
control scheme.

Index Terms—Integral sliding mode control, neural network,
friction compensation, piezoelectric ultrasonic motor

I. INTRODUCTION

Precision motion tracking performance is an essential re-

quirement in various applications, such as robotic manipulators

[1], [2], micro-operation platforms [3], [4], and especially

surgical devices [5], [6]. As a versatile motion platform, piezo-

actuated stages have been adopted to build different systems

for specific purposes. In some microscopes for scanning imag-

ing [7], the horizontal and vertical motions are driven by the

piezoelectric component, which has merits of fast response,

high precision, compact size, large driving force and so on

[8].

This work is supported by China Postdoctoral Science Foundation under
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A piezoelectric ultrasonic motor is a kind of direct drive

motor, which is composed of a mover and a stator. It is also

driven by piezoelectric component and provides high precision

and larger stroke compared with flexure-mechanism-based

piezoelectric actuators. This is due to the special movement

mode of the piezoelectric ultrasonic motor. Therefore, piezo-

electric ultrasonic motor can be used for many applications, for

example, the surgical device designed for assisting the medical

practitioners in completing the surgery at eardrum [9].

However, the friction resulting from relative motion be-

tween the mover and stator produces adverse effects on the

tracking performance of the motor. In a system driven by

piezoelectric ultrasonic motor, high tracking performance can

not be achieved by traditional control methods. To avoid

friction modeling, usually a robust control method is preferred,

such as proportional-integral-differential (PID) control, sliding

mode control (SMC) [10], [11], and intelligent control [12]. In

closed-loop control, sliding mode control (SMC) shows great

robustness by making the tracking error reach the designed

sliding mode surface quickly and then remain on it. To

further improve the system performance, a strategy is to use

the disturbance observer-based control, where the friction is

observed and compensated by a disturbance observer. Remark-

ably, extended state observer (ESO) [13] and sliding mode

observer [14] have been applied to achieve such compensation.

However, observer can be limited by its bandwidth which

make it only suitable for slow trajectory tracking. Besides

that, various sliding mode functions have been proposed for

the precision motion control, such as introducing integral term

[15], terminal sliding mode [16], etc. It has been verified that

PID-type sliding surface has fast transient response compared
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with the traditional PD-type one. And it has been used widely

by many researchers in the control of nonlinear systems.
It should be also noted that better performance can be

achieved with the consideration of the friction model. There

are several models [17]–[19] that have been studied to cap-

ture frictional effects, but they are considerably complex.

Moreover, the friction varies with temperature and mechanical

wear. Generally, an accurate model includes static, Coulomb

viscous and negative friction [20]. However, it is very difficult

to build and identify an accurate model to realize the high

precision model-based compensation [2]. An effective method

is to use approximating models. In [21], the simplest Coulomb

friction model is used, and the adaptive robust control (AR-

C) is proposed. Since neural networks (NNs) is powerful

in approximating nonlinear functions [22], many NN-based

friction compensation methods have been proposed [23]–[25].

The traditional NNs are based on smooth basis function but

a large number of NN nodes are required to reconstruct

piecewise continuous friction. To overcome this limitation, the

standard NNs are augmented with extra nodes using jump

basis functions to approximate non-smooth functions [23].

Significantly, the NNs consisting of jump basis functions can

approximate any non-smooth functions with few nodes [2].

However, this type of jump basis is set as zero when the

input is negative, which is not suitable for such systems that

is moving back and forth.
The aim of this paper is to design a controller to make the

piezoelectric ultrasonic motor to achieve high precision motion

tracking. This paper modifies the jump basis function to make

it symmetrical in forward and backward motions. The NNs

consisting of the modified jump basis is used to deal with the

friction and an integral siding mode control with NNs is then

proposed. Following that, the design procedure is described in

details and the stability is analyzed in this paper. The rest of

this paper is organized as follows. In Section II, the model

of a piezo-actuated motor (i.e., piezoelectric ultrasonic motor)

is presented. Next, the controller design is given in detail in

Section III. In Section IV, some simulations are carried out

to verify the effectiveness of the control system. Finally, the

conclusions are drawn in Section V.

II. MODEL OF A PIEZO-ACTUATED MOTOR

For a 1-DOF (degree-of-freedom) piezoelectric ultrasonic

motor shown in Fig. 1, the piezo component is fixed on the

stator, and the output platform is bonded on the mover which

is moved along the linear guide. In this motor, the friction

results in nonlinear system dynamics. Therefore, the dynamic

model of the motor can be described as

ẍ(t) + a1ẋ(t) + a0x(t) = b0u(t) + F (t) + d(t), (1)

where u and X are the input voltage and output displacement,

respectively. a1, a0, and b0 are the model coefficients. F
represents the friction and d is the disturbance.

A detailed phenomenon-based model usually adopted for

industrial controller design [20], which is described as

F (ẋ) = [α0 + α1e
−β1|ẋ| + α2(1− e−β2|ẋ|)]sign(ẋ), (2)

Fig. 1. A 1-DOF piezoelectric ultrasonic motor.

F

Velocity

F

Velocity

Fig. 2. Static, Coulomb and viscous friction model, with striback effect.

where α0 provides Coulomb friction, static friction is given

by α0 + α1, and α2 captures the viscous friction effects.

The model (2) is suitable to model the friction and Fig. 2

shows the typical relationship between the friction force and

the speed of movement.

It should be noted that the model (2) is highly nonlinear

and discontinuous at zero because of the change in direction

of movement. Therefore, identifying precise model parameters

is extremely challenging and time-consuming. In this case, the

NNs can be used to approximate this model.

III. CONTROLLER DESIGN

In the section, the design procedure of the proposed control

scheme is to be introduced in detail. First, the jump basis

functions is modified to be symmetrical. Then, the friction

model is reconstructed by the NNs. Based on the replaced

model with NNs, integral sliding mode control law is proposed

and given with stability analysis.

A. Modified NNs

The common three-layer NN is used to approximate the

friction model in the proposed control approach. Since the

friction is related to the velocity, the velocity acts as the

input of NNs. For non-smooth function, a sigmoid-jump
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approximation basis function [2], [20] is set as zero when

the input is negative. Considering the friction exists whether

the motor moves forward or backward, but in the opposite

direction, the basis function can be modified as

φi(v) = (1− e−|v|)(i−1), (3)

where i means the i-th neural network node.

In the motor system dynamics, the unknown friction model

can be replaced as

F (ẋ) = FNN (ẋ)sign(ẋ) + ε, (4)

and

FNN = W ∗Φ. (5)

where W ∗ = [w∗
1 , w

∗
2 , ..., w

∗
n] is the weights, Φ =

[φ1, φ2, ..., φn]
T is the vector of basis functions, and n is the

number of NN nodes. ε is the bounded approximation error,

i.e., |ε| < εm.

B. Integral Sliding model control

With the NN-based friction model, the system dynamics can

be rewritten as

ẍ+ a1ẋ+ a0x = b0u+ FNN sign(ẋ) + ε+ d. (6)

Here, the time variable t is omitted for simplicity. The

disturbance d is assumed to be bounded, namely, |d| < dm.

Define the position error and integral sliding mode function

with the given reference trajectory xd as follows:

e = x− xd, (7)

σ = k1e+ k2

∫
e, (8)

where k1 and k2 are positive constants, σ is the sliding

variable.

Then, the second-order state space model can be selected

as

σ1 = σ, (9)

σ2 = σ̇1 = k1ė+ k2e, (10)

σ̇2 = k1ë+ k2ė. (11)

Remarkably, σ2d is a virtual control which is chosen as

σ2d = −ξ1σ1, (12)

where ξ1 is a positive constant.

Let’s define a positive definite function V1,

V1 =
1

2
σ2
1 . (13)

By differentiating V1 with respect to time, we have

V̇1 = σ1σ̇1 = σ1σ2

= σ1σ2d + σ1(σ2 − σ2d)

= −ξ1σ
2
1 + σ1(σ2 − σ2d).

(14)

Once σ2 = σ2d, it can be obtained that V̇1 = −(σ1)
2 and

thus σ1 is guaranteed to be asymptotically stable.

Now, let θ = σ2−σ2d and consider the following Lyapunov

function,

V2 = V1 +
1

2
θ2. (15)

By differentiating V2 with respect to time and combining

(11) and the NN-based system model (6), we have

V̇2 =V̇1 + θθ̇

=− ξ1σ
2
1 + σ1θ + θ(σ̇2 − σ̇2d)

=− ξ1σ
2
1 + σ1θ + θ(k1ë+ k2ė− σ̇2d)

=− ξ1σ
2
1 + σ1θ + θ[k1(b0u+ FNN sign(ẋ) + ε+ d

− a1ẋ− a0x− ẍd) + k2ė− σ̇2d]. (16)

According to (16), the ideal control law can be chosen as

ud =− 1

b0
(FNN sign(ẋ) + ε+ d− a1ẋ− a0x− ẍd)

− 1

b0k1
(σ1 + k2ė− σ̇2d + ξ2θ).

(17)

Substitute (17) into (16), V̇2 can be obtained as

V̇2 = −ξ1σ
2
1 − ξ2θ

2. (18)

However, the friction FNN and the term ε+d are unknown.

Therefore, the following adaptive law is designed to estimate

them.

F̂NN = ŴΦ, (19)

˙̂
W = LΦsign(ẋ)θ, (20)

where the diagonal matrix L = diag(l1, l2, ..., ln) is adaptation

rate.

˙̂
km = γ|θ|, (21)

where kmsign(θ) functions as a robust term to handle the

disturbance and λ is its adaptation rate. It can be seen that the

frictional force is estimated and compensated by the neural

networks, so the residual nonlinearities is small and needs to

be dealt with by the robust term, namely, the discontinuous

sign function term kmsign(θ). In the proposed controller, km
is obtained through adaption so that the chattering problem

can be mitigated.

Then, the practical control law is given by

u =− 1

b0
(ŴΦsign(ẋ) + k̂msign(θ)− a1ẋ− a0x− ẍd)

− 1

b0k1
(σ1 + k2ė− σ̇2d + ξ2θ),

(22)

where ξ2 is a constant.

In summary, the structure of the obtained control scheme is

shown in Fig. 3

By giving the following conditions, km ≥ dm + εm, W̃ =
Ŵ−W ∗ and k̃m = k̂m−km, the Lyapunov function is defined

as

V3 = V2 +
k1
2
W̃L−1W̃T +

k1
2γ

k̃2m. (23)
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MotorControl law

Adaptive law 
(20) and (21)
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mode function
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Fig. 3. Block diagram of the proposed control scheme.

Take the time derivative of (23), it yields

V̇3 = V̇2 + k1W̃L−1 ˙̃WT + k1k̃m
˙̃
km

= −k1θW̃Φsign(ẋ) + k1θ(−k̂msign(θ) + ε+ d)

+ k1W̃L−1 ˙̂
WT + k1k̃m

˙̂
km − ξ1σ

2
1 − ξ2θ

2

≤ k1θ(−k̂msign(θ) + km) + k1k̃m
˙̂
km − ξ1σ

2
1 − ξ2θ

2

= −k1k̃m|θ|+ k1k̃m
˙̂
km − ξ1σ

2
1 − ξ2θ

2

= −ξ1σ
2
1 − ξ2θ

2 < 0. (24)

It can be seen that (24) is negative, which implies that σ
and θ will converge to zero. It can be also concluded that the

proposed controller is stable with the NNs to deal with the

adverse effects of the unknown friction.

Furthermore, it is shown in [26] that the adaptive law of

weights can be augmented with modification term to improve

robustness of the controlled system. Thus, the adaptive law is

modified as,
˙̂
W = LΦsign(ẋ)− ΛŴ , (25)

where the values are small constants in diagonal matrix Λ =
[λ1, λ2, ..., λn]. Actually, the weights will go through low-pass

filters to prevent sudden changes in control.

IV. SIMULATION RESULTS

The numerical studies is conducted in MATLAB on the ba-

sis of the given nominal transfer function (see (26)) presented

in a previous publication [27].

ẍ(t) + 202ẋ(t) + 248.4x(t) = 4940u(t) + F (t) + d(t), (26)

where the model parameters can be obtained a1 = 202, a0 =
248.4, b0 = 4940. In the simulation, parameters in the friction

model are set as α0 = 1, α1 = 1.1, α2 = 0.5, β1 = 20 and

β2 = 1.5.

A. NN Approximation

In the numerical studies, the ability of NNs based on jump

basis function to approximate the unknown friction model is

tested firstly. The nodes is chosen as n = 3, and the weight

matrix is W = [2,−2.68, 2.05]. With the same input v =
sin(2πt), the friction model and NNs outputs are shown in

Fig. 4. It can be seen that the specific NNs can approximate

the non-smooth friction accurately with only few nodes.

Fig. 4. Comparison of friction model and NNs Outputs.

B. Tracking Results

To apply the designed controller, the control parameters are

chosen as k1 = 10, k2 = 2000, ξ1 = 800 and ξ2 = 700.

The weights used in NNs are adjusted online with initial

value of zero. The corresponding adaptive rates are set as

L = diag[100, 200, 200] and γ = 0.1.

For comparison purpose, the integral sliding mode controller

(ISMC) without NNs is conducted in the simulation as well.

The shared parameters are the same but the weights adaption

rate L is set to be zero.

With the designed controller, the tracking results with a sine

reference signal of the system is shown in Fig. 5. As can be

Fig. 5. Tracking performance of the integral sliding model control with NNs.

4400

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 06,2022 at 02:39:38 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Tracking performance of the integral sliding model.

seen, the error converges quickly and reaches a stable range of

0.005 mm, which conforms the convergence and effectiveness

of the proposed controller.

Without considering friction model-based compensation,

ISMC treats the unknown friction as a part of disturbance.

The tracking performance of using only ISMC is shown in Fig.

6. As can be seen the steady-state error with the ISMC can

also reach a small range of 0.007 mm. However, the steady-

state error by using only ISMC is larger than using ISMC NN

controller. The simulation results of ISMC are robust to deal

with disturbance and uncertainties.

By comparing the errors of the two controllers as shown

in Fig. 7, it can be observed that the proposed controller can

track the desired trajectory more accurately and faster, which

mainly results from NNs compensation for friction.

V. CONCLUSION

This paper proposed a NN-based integral sliding mode

controller to track desired trajectories. To address the friction

effects in the piezoelectric ultrasonic motor, neural networks is

used to approximate the unknown friction model. The common

NNs based on smooth basis functions need large number of

nodes to capture non-smooth functions and may not ensure

the accuracy. In this paper, an augmented NN consisting of

jump basis functions can achieve accurate approximation for

discontinuous functions using few nodes. Then, an integral

sliding mode control is designed based on the system model

with NN-based friction model. The sliding surface is a simple

proportional-integral function of the position error and the

control law is obtained through the backstepping method. The

Fig. 7. Tacking error comparison of the two methods.

controller structure and design procedure are then presented

in detail in this paper. The control strategy is analyzed using

a Lyapunov theory for theoretical proof of its stability. The

tracking performance of the designed controller is studied and

analyzed via numerical studies. From the simulation results,

great tracking performance can be achieved and the proposed

method can be easily extend to applied to other similar

nonlinear systems with the effects of discontinuous functions.
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