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Integrated Modified Repetitive
Control With Disturbance
Observer of Piezoelectric
Nanopositioning Stages
for High-Speed and
Precision Motion
The tracking performance of piezoelectric nanopositioning stages is vital in many appli-
cations, such as scanning probe microscopes (SPMs). Although modified repetitive con-
trol (MRC) can improve tracking performance for commonly used periodic reference
input, it is sensitive to unexpected disturbances that deteriorate tracking precision, espe-
cially for high-speed motion. In order to achieve high-speed and precision motion, in this
paper, a new composite control scheme by integrating MRC with disturbance observer
(DOB) is developed. To simplify controller implementation, the hysteresis nonlinearity is
treated as external disturbance and the proposed method is designed in frequency
domain. The stability and robust stability are analyzed, and an optimization procedure to
calculate the controller parameters is employed to enhance the performance to the maxi-
mum extent. To validate the effectiveness of the proposed method, comparative experi-
ments are performed on a piezoelectric nanopositioning stage. Experimental results
indicate that the hysteresis is suppressed effectively and the proposed method achieves
high-speed and precision tracking with triangular waves references up to 25 Hz and
improves the disturbance rejection ability with disturbances under different frequencies
and robustness to model uncertainty through comparing with feedback controllers and
MRC, respectively. [DOI: 10.1115/1.4042879]

1 Introduction

With the rapid development in nanotechnology, the piezoelec-
tric nanopositioning stage becomes an essential component to
achieve high-precision tracking and positioning for nanometer or
subnanometer resolution in many applications, such as scanning
probe microscopes (SPMs) [1], atomic force microscopes [2],
micromanipulation systems [3], ultra-precision machine tools
[4,5], wafer stages [6], and so on. Generally, these stages are
driven by piezoelectric actuators to achieve fast response time
and high stiffness, and flexure-hinge-guided mechanisms are
employed to transmit motion to avoid friction [7]. The demand for
high-throughput nanomanufacturing has posed new challenge for
the control of high-speed and precision motion [8]. However, the
indigenous hysteresis nonlinearity and lightly damped vibrational
modes of piezoelectric nanopositioning stage degrade motion per-
formance seriously.

To compensate hysteresis nonlinearity, feedforward control
with inverse hysteresis model is the most common approach. The
models of hysteresis are usually built by Preisach [9], Prandtl-
Ishlinskii [10,11], Bouc-Wen [12] and Dahl [13] models, etc. It
should be noted that in the view of practical implementation, a lot
of parameters should be identified to improve the modeling accu-
racy. On the other hand, the cascade connection of static hystere-
sis nonlinearity at low-frequency region with linear vibration
dynamics is a simple approach to represent the complex model of
piezoelectric nanopositioning stages [14,15]. In view of this, some

approaches without hysteresis modeling have been proposed by
treating the hysteresis as an input disturbance [16,17]. However,
with the motion speed increasing, the performance is still limited
by the lightly damped modes, which restricts the operating fre-
quency less than 1/100 to 1/10 of the first resonant mode because
of oscillations and unexpected residuals [18].

In order to push the tracking performance in terms of speed,
feedback controllers, such as resonant control [19], positive posi-
tion feedback control [20], integral resonant control [21] and
time-delay control [22], and loop-shaping approach [23] have
been proposed to impart substantial damping to improve the track-
ing speed. Because of the fundamental algebraic restrictions in
feedback, these standalone methods may not meet the required
performance, such as errors caused by phase lag.

It should be noted that the periodic trajectory is commonly used
in many applications, especially for the lateral motion of nanopo-
sitioning stage in SPMs [24]. To cope with the issues in this
motion process, it is natural to utilize repetitive control (RC) to
achieve required performance, which is based on the internal
model principle [25] and can provide infinite gain at the funda-
mental frequency as well as its harmonics of the reference or dis-
turbance [26]. The tracking error can converge to zero with the
number of motion period increasing. RC can be plugged into an
existing feedback loop to enhance performance and the periodic
reference should be known primarily. Compared with another
learning-type controller, iterative learning control [27], RC does
not need to reset to the initial position after each iteration, which
simplifies the practical implementation [28]. However, although
conventional RC can handle with periodic reference or disturb-
ance, the error at nonperiodic frequency is amplified because of
waterbed effect. In Ref. [26], a dual-stage RC has been proposed
to reduce the magnitude of nonperiodic frequency of the
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sensitivity transfer function of the closed-loop system via cascad-
ing conventional RC with odd-harmonic RC. It should be noted
that the method requires calculating parameters of both the RCs
and the inverse hysteresis model. Besides, a dual-mode structure
RC can handle even-harmonic periodic errors and odd-harmonic
periodic errors simultaneously for constant-voltage constant fre-
quency pulse-width modulation converters [29,30] without hyster-
esis nonlinearity. Recently, Chen and Tomizuka proposed a
modified repetitive control (MRC) to reduce periodic errors as a
repetitive disturbance observer [31]. However, the main downside
of this approach lies in that it has not improved the ability to sup-
press nonperiodic disturbance and model uncertainties, which are
common in piezoelectric nanopositioning stages stemmed by hys-
teresis, sensor noise, mechanical shocks, or external environment.

In the perspective of this aspect, disturbance observer (DOB) is
a popular method to eliminate unexpected disturbance and model
uncertainties [32]. Although a state-observer-based RC has been
proposed and designed to estimate disturbance in time domain
[33,34], the method is only designed for a second-order plant and
the hysteresis nonlinearity for nanopositioning stages with com-
plex dynamics is not addressed. In Ref. [35], the repeated errors
are compensated through iterative learning control and additional
nonrepeating exogenous signals are rejected by a H1 controller,
where the Q filter and weighting functions are determined by the
repetitive-to-nonrepetitive ratio of the collected errors calculated
in frequency domain. The combined method needs to collect
experimental tracking data for several iterations for one desired
reference signal to compute repetitive-to-nonrepetitive off-line.

This paper is motivated to achieve high-speed and precision
motion for piezoelectric nanopositioning stages with periodic ref-
erence. Although MRC can improve reference tracking perform-
ance, it is sensitive to unexpected disturbances that do not match
with the frequency of reference. The main contribution of this
paper is three-fold. First, in order to realize high-speed tracking
and high-precision motion simultaneously, the control scheme
by integrating MRC with DOB is proposed via designing it in
frequency domain and treating hysteresis nonlinearity as low-
frequency disturbance to simplify controller implementation. Sec-
ond, the stability and robust stability of the proposed method are
also analyzed and the parameters are calculated through optimiza-
tion. Thirdly, the comparative experiments on a piezoelectric
nanopositioning stage are performed to elucidate the ability for
high-speed tracking, disturbance rejection, and robustness of the
proposed method.

The rest of this paper is organized as follows. The system
description is shown in Sec. 2. The controller design using MRC in
tandem with DOB is presented in Sec. 3. Section 4 demonstrates
the stability and parameters optimization in detail. Experiments on
a piezoelectric nanopositioning stage and comparisons of the results
are elaborated in Sec. 5, and Sec. 6 gives the conclusions.

2 System Description

2.1 Experimental Setup. The experimental setup is shown in
Fig. 1. A piezoelectric nanopositioning stage P-561.3CD is devel-
oped to evaluate the performance. The control input voltage given
through peripheral component interconnect (PCI) bus is generated
by 16-bit digital to analog converters (DAC) via the data acquisi-
tion card PCI 6289 and subsequently amplified by a piezo ampli-
fier module E-503.00 for the stage. The output position
normalized and read via a sensor monitor E-509.C3A is passed to
the data acquisition card PCI 6289 by 18-bit analog to digital con-
verters (ADC). The overall control system is built in SIMULINK

real-time environment on the development personal computer and
executed real-time on the target personal computer. In this paper,
the sample frequency of the system is set to 2 kHz.

2.2 System Identification. In order to identify the linear
dynamic model of the piezoelectric nanopositioning stage without

load on it, a sine-sweep input with a constant low amplitude
between 0.1 Hz and 500 Hz is applied to the x axis. It should be
noted that a low-amplitude voltage was used to excite the system
to avoid distortion from hysteresis nonlinearity [23]. Through
being discretized via zero-order holder method, the nominal linear
discrete transfer function P(z) with the forward time-shift operator
z can be identified as

P zð Þ ¼
0:0122z4 � 0:045z3 þ 0:109z2 � 0:108zþ 0:0532

z5 � 3:794z4 þ 6:25z3 � 5:492 þ 2:556z� 0:5057
(1)

The identified and measured frequency responses are plotted in
Fig. 2, which indicates that Eq. (1) describes the dynamics of the
stage sufficiently accurately and it contains nonminimum phase
zeros. It is clear that the first resonant frequency is 210 Hz from
Fig. 2, which limits the motion within a low speed when imple-
menting the built-in feedback controller [18]. Moreover, in this
paper, in order to design the proposed controller transparently, the
complex dynamic of the stage is simplified by regarding the hys-
teresis as an external disturbance added to a linear vibration
dynamic P(z) to avoid hysteresis modeling [17,22,36] and the
nonlinearity is migrated by the proposed method that will be veri-
fied through experiments in Sec. 5.

3 Controller Design

3.1 Modified Repetitive Control. Repetitive control is an
effect control algorithm to facilitate performance with repetitive
reference or disturbance based on internal model principle [25].

Fig. 1 The experimental setup of the piezoelectric nanoposi-
tioning stage: (a) experimental platform and (b) block diagram
of control system
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For a discrete conventional RC, a signal generator 1=ð1� z�NÞ,
where N is the number of points per period of the reference or dis-
turbance, should be contained in the feedback loop. However, the
method magnifies the undesired gain at other frequencies accord-
ing to Bode integral theorem [37]. For precision motion, the non-
periodic disturbance can be obvious, so that the tracking
performance is deteriorated significantly.

In this paper, a MRC proposed by Chen and Tomizuka [31] is
utilized to alleviate the gain amplifications at the nonperiodic fre-
quencies. The block diagram is demonstrated in Fig. 3, where
Cfb(z) is the baseline feedback controller, P–1(z) is the model
inversion of the nominal plant P(z) and QRC(z) is a spectrum
extractor filter to provide infinite gains at the harmonics of the
periodic reference. The signal r(k) is the anticipated periodic ref-
erence, y(k) is the position output, and e(k) is the tracking error
with sensor noise n(k). The control force u(k) is determined by
both feedback controller and MRC. It should be noted that d(k)
contains hysteresis nonlinearity, external unknown disturbance,
and error caused by model uncertainties, which should be taken
into consideration for piezoelectric nanopositioning systems.

For a nonminimum phase system P(z), the transfer function can
be decomposed as

P zð Þ ¼
Bs zð ÞBu zð Þ

A zð Þ
(2)

where Bs(z), Bu(z) are composed by stable and unstable zeros,
respectively, and A(z) contains all the identified poles. Bu(z) is a
nth-order polynomial with n nonminimum phase zeros and
expressed as

BuðzÞ ¼ bunzn þ buðn�1Þz
n�1 þ � � � bu0 (3)

The zero-phase-error tracking controller [38,39] is adopted to
approximate the inversion of P(z) in this paper, i.e.,

P�1 zð Þ ¼
A zð ÞBf

u zð Þz� nþdð Þ

Bs zð Þ Bu zð Þjz¼1

� �2
(4)

where d is the delay to make the transfer function casual for prac-
tical implementation. Bf

uðzÞ is a nth-order polynomial by flipping
the coefficients of Bu(z), i.e.,

BuðzÞ ¼ bu0zn þ bu1zn�1 þ � � � bun (5)

Therefore, for m¼ dþ n, it can be obtained that

PðzÞP�1ðzÞ � z�m (6)

According to Fig. 3, the equivalent controller from e(k) to u(k) is

C zð Þ ¼
Cfb zð Þ þ QRC zð ÞP�1 zð Þ

1� z�mQRC zð Þ
(7)

and the sensitivity transfer function SRC(z) from r(k) to e(k) is
given by

SRC zð Þ ¼
1� z�mQRC zð Þ

1þ P zð ÞCfb zð Þ þ QRC zð Þ P�1 zð ÞP zð Þ � z�m
� � (8)

From Eq. (6), SRC(z) satisfies that

SRC zð Þ �
1� z�mQRC zð Þ
1þ P zð ÞCfb zð Þ

(9)

In order to obtain infinite gains at the harmonics of r(k), QRC(z)
is designed as [31]

QRC zð Þ ¼ 1� að Þz� N�mð Þ

1� az�N
(10)

where a � ½0; 1Þ is the parameter make MRC more flexible. The
numerator of Eq. (9) is expressed as

1� z�mQRC zð Þ ¼
1� z�N

1� az�N
(11)

According to Eq. (11), if a¼ 0, the MRC generates a loop shape
that is similar to a traditional RC, which may amplify nonperiodic
errors. On the other hand, a¼ 1 cuts off the control force of the
repetitive compensation. When a � ½0; 1Þ, the frequency response
of Eq. (11) demonstrates that as a increasing, the signal passed
through is selected at the harmonics of the periodic reference and
both the repetitive and unexpected errors are significantly allevi-
ated. However, a smaller a results in a faster convergence with
amplification of nonperiodic errors and vise verse [31,36].

To improve the robustness of MRC caused by model uncertain-
ties at high-frequency region, a zero phase low-pass filter is added
to QRC(z) as

QrobustðzÞ ¼ az�1 þ bþ az (12)

and a and b should satisfy 2aþ b¼ 1. Therefore, the QRC(z) uti-
lized in this paper is described as

QRC zð Þ ¼
1� að Þ az�1 þ bþ azð Þz� N�mð Þ

1� az�N
(13)

Remark 1. Although MRC can handle with repetitive errors with-
out amplification of nonperiodic disturbance, the ability to reject
disturbance is still limited, which can be deduced from the transfer
function from d(k) to y(k), i.e.,

GRC;yd zð Þ �
P zð Þ 1� z�mQRC zð Þð Þ

1þ P zð ÞCfb zð Þ
(14)

Fig. 2 Frequency response of identified and measured model
with sine-sweep input

Fig. 3 Block diagram of MRC with a series–parallel
implementation
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For the best situation with a¼ 0.99, the disturbance rejection of
MRC is at the same level as feedback controller. Note that in pie-
zoelectric nanopositioning stage with high-precision motion, the
implementation with standalone MRC may not be sufficient to
handle hysteresis nonlinearity, low-frequency errors, and external
unknown nonperiodic disturbance, especially for high-speed
tracking.

3.2 Disturbance Observer. In the context of external dis-
turbance and system uncertainties, DOB is an effective method by
augmenting into the original feedback controller as the inner loop
to estimate the disturbance and feeds it back to original control
force to achieve disturbance rejection [25,40,41]. The block dia-
gram of DOB with outer feedback loop is illustrated in Fig. 4,
where ufb(k) is control signal of feedback controller, dest(k) is the
estimated disturbance of d(k) and QDOB(z) is a low-pass filter to
retain robustness. According to Fig. 4, the transfer function from
ufb(k) to y(k) without the feedback loop is deduced as

GDOB;yufb
zð Þ ¼

P zð Þ
1þ QDOB zð Þ P zð ÞP�1 zð Þ � z�m

� � (15)

and the disturbance rejection ability with feedback controller
Cfb(z) is concluded by

GDOB;yd zð Þ ¼ P zð Þ 1� z�mQDOB zð Þð Þ
1þ P zð ÞCfb zð Þ þ QDOB zð Þ P zð ÞP�1 zð Þ � z�m

� �
(16)

It is obvious that with a low-pass filter QDOB(z), the system per-
forms approximately as the nominal plant P(z) and the disturbance
within the filter bandwidth can be compensated according to Eq.
(16). Although the observed disturbance exits m-step delay, the
amplitude response of 1� z�mQDOB is zero if QDOB¼ 1 under the
ideal condition. However, it should be noted that DOB can com-
pensate the disturbance within the bandwidth of QDOB(z) consid-
ering that a compromise should be made for the robustness of the
plant and noise.

Remark 2. With Eq. (6), the transfer function from r(k) to
e(k)with feedback controller is simply expressed as

GDOB;er zð Þ �
1

1þ P zð ÞCfb zð Þ
¼ Sfb zð Þ (17)

which infers that the tracking performance has not been improved
significantly and its frequency domain behavior is similar to sensi-
tivity transfer function with feedback controller Sfb(z) although
DOB can improve the ability for disturbance rejection of the
system.

3.3 Integration of Modified Repetitive Control With
Disturbance Observer. For piezoelectric nanopositioning stage
with periodic reference, it is necessary to achieve high-speed and
precision motion simultaneously in order to satisfy the require-
ment for practical application. In this paper, a composite control

scheme by integrating MRC with DOB is proposed to handle this
issue as is shown in Fig. 5.

Based on the block diagram, the following input–output rela-
tionships can be derived and the forward time-shift operator z is
omitted for brevity

Ger ¼
1þ QDOB PP�1 � z�mð Þ
� �

1� z�mQRCð Þ
1þ PCfb þ QRC þ QDOB � z�mQRCQDOBð Þ PP�1 � z�mð Þ

(18)

Gyd ¼
P 1� z�mQDOBð Þ 1� z�mQRCð Þ

1þ PCfb þ QRC þ QDOB � z�mQRCQDOBð Þ PP�1 � z�mð Þ
(19)

Taking Eq. (6) into consideration, the amplitude responses of
transfer functions with different choices of the Q filter are demon-
strated in Table 1 to further elucidate the superiority of the pro-
posed method. It is clear that when QRC¼ 1, QDOB¼ 0, the
reference is perfectly tracked but the disturbance has not been
rejected unless the frequency of disturbance locates at the har-
monics of the periodic reference. On the other hand, the disturb-
ance can be completely compensated with QRC¼ 0, QDOB¼ 1.
However, the tracking performance is not improved significantly.
As a consequence, considering the multiple objectives, including
high-speed tracking, precision motion, and disturbance rejection,
the proposed method can achieve the required performance sub-
stantially via choosing QRC¼ 1, QDOB¼ 1. In order to improve
the performance as much as possible, the design of QRC and QDOB

is of great importance. According to Eqs. (18) and (19), it is
nature that the bandwidth of Qrobust both in MRC and QDOB

should be as large as possible to achieve high-speed tracking and
reject disturbance within larger frequency region on the premise
that the overall system retain stability.

Remark 3. Compared with the integrated method designed in
time domain proposed in Refs. [33] and [34], the proposed method
in this paper is developed in frequency domain, which can be eas-
ily implemented digitally via high-speed data acquisition. Besides,
the above-mentioned method is only designed for a second-order
plant and the hysteresis nonlinearity is not addressed, which is
unavoidable for piezoelectric nanopositioning stages. On the
other hand, the improvement of rejecting nonperiodic and

Fig. 4 Block diagram of DOB with a series–parallel
implementation

Fig. 5 Block diagram of the proposed control scheme by inte-
grating MRC with DOB

Table 1 Comparisons of amplitude responses with different Q
filters

Q filter jGer j jGyd j

QRC¼ 0, QDOB¼ 0
��� 1

1þ PCfb

��� ��� P

1þ PCfb

���
QRC¼ 1, QDOB¼ 0 0

���Pð1� z�mQRCÞ
1þ PCfb

���
QRC¼ 0, QDOB¼ 1

��� 1

1þ PCfb

��� 0

QRC¼ 1, QDOB¼ 1 0 0
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low-frequency disturbance is enhanced substantially for high-
speed and precision tracking in this paper, which is different from
the controller in Ref. [36].

Remark 4. In essence, the control scheme is a double DOB con-
troller constituted by a repetitive DOB, i.e., MRC and a frequency
DOB to minimize error and reject disturbance, respectively. Note
that the baseline controller Cfb(z) can either remain unchanged or
be replaced by other various control approaches for the plug-in
property of the proposed method.

4 Stability and Parameters Optimization

4.1 Stability and Robust Stability. For practical implemen-
tation, it is necessary to analyze the stability of the proposed
method, which is demonstrated as follows.

THEOREM 1 (Stability). Assume that the baseline feedback con-
troller Cfb(z) can stabilize the closed-loop system, i.e., the sensi-
tivity transfer function Sfb(z) is stable and Ts is the sample time. If
the Q filters meet

jQRCþQDOB� z�mQRCQDOBjz¼ejxTs <
��� 1þPCfb

PP�1� z�m

���
z¼ejxTs

(20)

for x � ½0; p=Ts�, the system with the proposed method is asymp-
totically stable.

Proof. The transfer function from r(k) to y(k) is derived accord-
ing to Fig. 5 as

Gyr ¼
PCfb þ PP�1

n QRC

1þ PCfb þ QRC þ QDOB � z�mQRCQDOBð Þ PP�1 � z�mð Þ
(21)

After rearrangement, Eq. (21) can be restated as the product of
three simpler transfer functions as

Gyr ¼ H2

1

1þ SfbH1

(22)

with

H1 ¼ ðQRC þ QDOB � z�mQRCQDOBÞðPP�1 � z�mÞ (23)

H2 ¼
PCfb þ PP�1QRC

Sfb

(24)

The equivalent block diagram of Eq. (22) is shown in Fig. 6.
According to small gain theorem [42], the condition for stability
should satisfy

jSfbH1jz¼ejxTs < 1 (25)

for x � ½0; p=Ts�. Because Sfb is always stable, Eq. (25) can be
reformulated as

jQRC þ QDOB � z�mQRCQDOBjz¼ejxTs <
��� 1

Sfb PP�1 � z�mð Þ
���
z¼ejxTs

(26)

Therefore, Eq. (22) meets the stability condition of the closed-
loop system with the proposed method.

In terms of the robustness, another challenge of the stage is that the
first resonant mode frequency varied with the load on it, which may
result in the unstable closed-loop system. The robust stability consid-
ered the model uncertainty of the proposed controller as follows.

THEOREM 2 (Robust stability). Assume that the baseline feed-
back controller Cfb(z) can stabilize the closed-loop system and the
perturbed plant is determined by Pu ¼ Pð1þ DWÞ, where DW is
the determined bound of the multiplicative model uncertainty. The
sufficient robust stability of the closed-loop system is given by

jDWjz¼ejxTs <
��� Dyr

PCfb þ PP�1Q

���
z¼ejxTs

(27)

for x � ½0; p=Ts�;Q ¼ QRC þ QDOB � z�mQRCQDOB, and Dyr is
the denominator of Gyr

Proof. Substituting Pu ¼ Pð1þ DWÞ into the denominator of
Gyr, the characteristic equation of the system with Pu can be
deduced as

Dyr;u ¼ 1þ Pð1þ DWÞCfb þ ðPð1þ DWÞP�1 � z�mÞQ (28)

Rearrange the term and Eq. (28) can be rewritten as

Dyr;u ¼ Dyr þ 1þ PCfb þ PP�1Q

Dyr
DW

 !
(29)

Based on small gain theorem [42], the condition for the robust
stability of the system is expressed as

jPCfb þ PP�1Q

Dyr
DWjz¼ejxTs < 1 (30)

4.2 Parameters Optimization. The analysis in Sec. 3, it is
clear the bandwidths of QRC and QDOB affect the performance sig-
nificantly. However, because the Q filters in the proposed method
contains low-pass filters, the cutoff frequencies are limited by the
robust stability and precision tracking performance at high fre-
quencies. In this paper, in order to exert the control force of the
controller as much as possible, a simple optimization procedure is
employed to determine the bandwidth of the low-pass filters with
the constrain of stability. The optimization problem is expressed
as

max
xRC ;xDOB

xRC þ xDOB

s:t:

Qrobust zð Þjz¼ejxRCTs ¼ 0:701

QDOB zð Þjz¼ejxDOBTs ¼ 0:701

jQjz¼ejxTs <
��� 1þ PCfb

PP�1 � z�m

���
z¼ejxTs

jDWjz¼ejxTs <
��� Dyr

PCfb þ PP�1Q

���
z¼ejxTs

0 < xRC;xDOB < 2pfNyquist

8>>>>>>>>>><
>>>>>>>>>>:

(31)

where xRC, xDOB are the cutoff frequencies of low-pass filter in
MRC and DOB, respectively. fNyquist is the Nyquist frequency cal-
culated by 2/Ts. According to Eq. (31), the cutoff frequencies are
optimized simultaneously under the condition for retaining stabil-
ity and robust stability to enhance the performance to the maxi-
mum extent.

5 Experimental Results and Analysis

In this section, controller implementation and comparative
experiments are demonstrated to verify the performance of theFig. 6 Equivalent block diagram for stability analysis
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proposed method. Furthermore, four controllers have been devel-
oped for comparisons as follows:

(1) C1: the baseline feedback controller with a lower
bandwidth.

(2) C2: the baseline feedback controller with a higher
bandwidth.

(3) C3: the baseline feedback controller C1 with MRC.
(4) C4: the baseline feedback controller C1 with the proposed

composite method.

5.1 Controller Implementation. For the baseline feedback
controller, a notch filter with integral controller is designed pri-
marily. Through being discretized by zero-order holder method, it
is expressed as

Cfbl ¼
0:06251z3 � 0:03651z2 � 0:03834zþ 0:06068

z3 � 2:111z2 þ 1:963z� 0:8519
(32)

In addition, another feedback controller with a higher closed-loop
bandwidth is designed to validate the effectiveness of the pro-
posed controller through comparison, i.e.,

Cfbh ¼
0:1042z3 � 0:06085z2 � 0:06391zþ 0:1011

z3 � 2:111z2 þ 1:963z� 0:8519
(33)

For the implementation of the proposed method, the bound of
multiplicative model uncertainty DW of the stage is identified
first. Figure 7 demonstrates the frequency responses of the multi-
plicative model uncertainty with different loads as the load on the
stage increasing from 0 g to 300 g with sine-sweep input and the
DW is expressed as

DW ¼ 2:512z4 � 8:568z3 þ 10:96z2 � 6:235zþ 1:331

z4 � 2:693z3 þ 2:72z2 � 1:221zþ 0:2056
(34)

The control scheme in Fig. 5 is adopted for the optimization
process. The plant inversion P–1(z) is calculated by zero-phase-
error tracking controller using Eq. (4), and the delay term m is
determined via m¼ dþ n. Combined with Eq. (31) and the trans-
fer function DW, the optimization process can be conducted in
MATLAB by the function fmincon for given constraints. According
to the optimization result, the cutoff frequencies of the low-pass
filters are obtained as 363 Hz with a¼ 0.25, b¼ 0.5 in QRC and
153 Hz for a third-order Butterworth filter in QDOB, respectively.
It should be noted that a time-varying a is designed for fast con-
vergence and small steady-state error [31]. In this paper, for the

first period of the reference, a is set as 0.001 to achieve fast con-
vergence, then increased to 0.9 for the next two periods, and
finally kept at 0.9.

To investigate the superiority of the proposed method in fre-
quency domain, the Bode diagrams of transfer functions from r(k)
to y(k), r(k) to e(k) and d(k) to y(k) are plotted in Fig. 8 with
a¼ 0.99, N¼ 100 and 2 kHz sample rate. It is clear that the band-
width of C2 at 40.8 Hz is higher that of at 17.2 Hz C1 at the
expense of light overshoot. From Fig. 8(b), the magnitudes of C3

and C4 have lower gains at the harmonics of 20 Hz compared with
C1 and C2, i.e., the frequency of reference, which indicates that
the reference caused tracking error is eliminated to achieve preci-
sion tracking. However, it should be noted that the disturbance
rejection ability of C3 is the same as C1 aside from the disturbance
locating at the harmonics of the reference as is illustrated in
Fig. 8(c). In practice, the standalone implementation of C3 may be
not sufficient under large external disturbance such as model
uncertainty and unknown nonperiodic disturbance from environ-
ment. By contrast, it can be concluded that C4 can reject disturb-
ance significantly and maintain precision tracking simultaneously
from frequency domain analysis.

5.2 Comparative Experiments

5.2.1 Suppression of Hysteresis. In this paper, the hysteresis
nonlinearity is treated as a low-frequency external disturbance
without building hysteresis modeling for simple implementation.
Experimental results of hysteresis curves with different controllers
are displayed in Fig. 9 when 1 Hz triangular wave with 5 lm
peak-to-peak amplitude is injected into x axis. For the open-loop

Fig. 7 Multiplicative model uncertainty with different loads
and the bound of uncertainty DW

Fig. 8 Comparisons in frequency domain of different control-
lers: (a) Bode diagram of transfer functions from r(k) to y(k), (b)
Bode diagram of transfer functions from r(k) to e(k), and (c)
Bode diagram of transfer functions from d(k) to y(k)
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tracking, the relative maximal error (ermax) is 5.09%, which exhib-
its obvious hysteresis nonlinearity. Note that although the stand-
alone feedback controllers C1 and C2 can suppress hysteresis
partly, the ermax of 2.55% and 1.74% are still large for precision
tracking. The effectiveness of the proposed method C4 is verified
by the ermax of 0.33%, which demonstrates that the hysteresis is
mitigated substantially.

5.2.2 High-Speed Trajectory Tracking. In order to validate
the high-speed tracking performance of the proposed method, the
triangular waves at 5 Hz, 10 Hz, 20 Hz, and 25 Hz over a 5 lm dis-
placement range are performed on the piezoelectric nanoposition-
ing stage. The steady-state root-mean-square errors (erms) and
maximal errors (emax) are tabulated in Table 2 in detail. As an
illustration, the tracking performance with 10 Hz triangular waves
is demonstrated in Fig. 10 in detail. The erms and emax with C4

reduce 34.89% (from 6.841 nm to 4.454 nm) and 20.56% (from
39.401 nm to 31.302 nm), respectively, with respect to the condi-
tion with C3, whereas C1 and C2 cannot achieve the anticipated
results.

Fig. 9 Experimental results of hysteresis suppression with dif-
ferent controllers

Table 2 Statistical results of steady-state errors with different
references

Error (nm) C1 C2 C3 C4

5 Hz erms 509.230 271.328 3.814 3.198
emax 596.730 394.881 20.200 16.075

10 Hz erms 964.990 550.508 6.841 4.454
emax 1146.100 773.208 39.401 31.302

20 Hz erms 1613.801 1122.414 11.974 11.662
emax 2194.002 1509.803 68.315 63.216

25 Hz erms 1775.101 1449.699 15.942 15.547
emax 2601.102 1904.375 79.282 79.281

Fig. 10 Experimental results of 10 Hz triangular wave tracking
with different controllers: (a) tracking results, (b) tracking
errors, and (c) zoomed-in view of the steady-state tracking error

Fig. 11 Experimental results of erms versus period with differ-
ent controllers: (a) 5 Hz triangular wave, (b) 10 Hz triangular
wave, (c) 20 Hz triangular wave, and (d) 25 Hz triangular wave

Fig. 12 Experimental results of erms versus period with differ-
ent disturbances: (a) tracking error under d1(k), (b) tracking
error under d2(k), (c) tracking error under d3(k), and (d) tracking
error under d4(k)
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The erms of each period are showed in Fig. 11. It is can be seen
that the performance with C1 is the worst especially at the fre-
quencies of references above 5 Hz, i.e., the standalone feedback
controller cannot handle with high-speed tracking. C2 is better
than C1 for its higher sensitivity function bandwidth of 10.6 Hz
and 16.02 Hz, respectively. For C3 and C4, the erms and emax

decrease within 16 nm and 80 nm, respectively, during all the
tracking references, which shows that the performance improves
significantly. According to Fig. 11 and Table 2, the results of C3

and C4 are very similar and the key difference between them lies
in that a DOB is included in C4. It should be noted that the experi-
ments are conducted in ideal laboratory environment, where the
external disturbance is isolated perfectly. Despite this, the per-
formance still improves lightly with the proposed method. As can
be observed, the proposed method can remain precision even at
high-speed tracking.

5.2.3 Disturbance Rejection. To investigate the disturbance
rejection of the proposed method, four different disturbances are
injected to the system to simulate the possible conditions in real
implementation, which are define as

d1ðkÞ ¼ 0:05 sinð2p5kÞ
d2ðkÞ ¼ 0:05 sinð2p10kÞ
d3ðkÞ ¼ 0:05 sinð2p15kÞ
d4ðkÞ ¼ Chirp Disturbance

8>>>>><
>>>>>:

(35)

Table 3 Statistical results of steady-state errors with different
disturbances

Error (nm) C1 C2 C3 C4

d1(k) erms 957.850 546.438 16.319 4.871
emax 1137.140 767.668 56.688 31.026

d2(k) erms 963.760 548.172 5.665 4.843
emax 1152.891 762.052 38.240 30.330

d3(k) erms 970.870 554.743 44.435 18.060
emax 1146.670 775.261 88.670 53.200

d4(k) erms 962.760 551.009 33.494 15.780
emax 1142.310 784.888 90.075 45.181

Fig. 13 Spectrum of steady-state errors with different disturbances: (a) steady-state error under d1(k), (b) steady-state error
under d2(k), (c) steady-state error under d3(k), and (d) steady-state error under d4(k)

Fig. 14 Experimental results of 10 Hz triangular wave tracking
with 300 g load: (a) tracking errors and (b) zoomed-in view of
the steady-state tracking error
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For simplification, d1(k), d2(k), and d3(k) are periodic signals, and
d4(k) a chirp disturbance with frequency varying from 0.01 Hz to
20 Hz that is defined as a time-varying signal. The unit of the
above-mentioned disturbances is lm.

Figure 12 shows the performance of each period with different
disturbances when the reference is a 10 Hz triangular wave and
the statistical errors are given in Table 3. The conditions with C1

and C2 exhibit the worse performance, which is the same as trajec-
tory tracking. Theoretically, the performance of C3 for d1(k),
d3(k), and d4(k) should be close to C1 according to Table 2.
Because C3 can compensate the error caused by delay with C1 at
high-speed tracking, its performance is superior to standalone
feedback controller C1. For d2(k), the frequency of this disturb-
ance locates at the fundamental frequency of the periodic refer-
ence, which presents the best performance for both C3 and C4.
Compared with C3, C4 can cope with different disturbances no
matter the frequency of disturbance matches with the reference or
not. Even for the time-varying disturbance d4(k), the erms and emax

with C4 reduce 52.89% (from 33.494 nm to 15.780 nm) and
49.51% (from 90.075 nm to 45.181 nm), respectively, with respect
to the condition with C3. The spectra of steady-state errors with
different disturbances are demonstrated in Fig. 13. It is clear that
for C1 and C2 the frequency components of errors mainly locate at
the harmonics of the reference, whereas C3 and C4 can compen-
sate errors at those frequencies effectively. Furthermore, errors
caused by nonperiodic disturbance can also be suppressed signifi-
cantly with the proposed method, which is evident in Figs. 13(a),
13(c), and 13(d) compared with C3.

5.2.4 Robustness Test. The performance of the proposed con-
troller to model uncertainty is also conducted. In this subsection,
the 10 Hz triangular signals are fed into the closed-loop system
with different controllers to test the robust stability for the stage
with 300 g load. Note that the proposed controller in this paper is
designed for the unloaded model and its parameters remain
unchanged during the experiments. The tracking performances
with different loads are plotted in Fig. 14 and the statistical results
of errors are recorded in Table 4. It is evident that the proposed
controller achieves the best performance and the erms of feedback
only controllers C1 and C2 still exceed 500 nm. For C3, the erms

and emax are 7.405 nm and 47.796 nm, respectively. In comparison
with that, the statistical errors improve 38.72% (from 7.405 nm to
4.538 nm) and 31.99% (from 47.796 nm to 32.506 nm), which
demonstrates that the proposed method can handle with model
uncertainty and achieve a better tracking performance.

6 Conclusions

In this paper, a composite control scheme by integrating MRC
with DOB is proposed to achieve high-speed and precision motion
simultaneously for piezoelectric nanopositioning stages with peri-
odic reference even under unexpected disturbance. The hysteresis
nonlinearity is treated as low-frequency disturbance to avoid hys-
teresis modeling and simplify controller implementation and the
proposed method is developed in frequency domain. Furthermore,
the stability and robust stability are analyzed rigorously and the
parameters are calculated through optimization to enhance the
performance mostly. Although MRC can compensate the disturb-
ance with frequency at the harmonics of reference, the disturbance
rejection ability is not improved at other frequency region. To

validate the performance, the proposed method is also performed
on a piezoelectric nanopositioning stage. Experimental results
show that the proposed method can suppress low-frequency hys-
teresis effectively and achieve the best performance with the trian-
gular waves references up to 25 Hz, disturbances of different
frequencies, and model uncertainty caused by loads on the stage
through comparing with various controllers.

The future work will concentrate on designing the inverse
model using nonmodel-based approach and extent this approach
to multiple-input–multiple-output systems.
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