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Abstract
High bandwidth and fast tracking of desired trajectories are eagerly required in various applications that use piezoelectric

nanopositioning stages, especially in atomic force microscopes where the vibration stemming from lightly damped modes of

stages is a challenging control problem. In this study, a bandwidth-enhanced positive acceleration, velocity, and position

feedback damping controller is presented to achieve the tracking bandwidth exceeding the first resonant frequency through

using a novel pole-shift method. The stability of the positive feedback damped loop is examined by a mixed passivity, small-

gain approach, and Nyquist theorem framework. Also, in conjunction with a proportional–integral tracking controller,

robust stability is addressed for load uncertainties. Experimental application to a piezoelectric nanopositioning stage

demonstrates that a closed-loop bandwidth of 282.5 Hz is achieved, which exceeds the dominating resonance of the stage at

210 Hz. The achieved bandwidth is 1.35 times larger than the dominating resonance, which is a competitive result among

most existing damping control approaches. Comparative tracking results verify the effectiveness of the proposed control

scheme on the suppression of low-frequency hysteresis and tracking performance of high-speed triangular waves under

load variations.
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1. Introduction

The piezoelectric nanopositioning stage becomes a crucial
component to achieve nanometer positioning resolution,
high stiffness, and fast response time by using piezoelectric
actuators and flexure-hinge-guided mechanisms (Feng
et al., 2017; Yong et al., 2012) and has been widely ap-
plied in scientific and industrial fields at nanoscale, such as
scanning probe microscopes (Devasia et al., 2007; Salapaka
and Salapaka, 2008), atomic force microscopes (AFMs)
(Rana et al., 2016), micromanipulation systems (Li et al.,
2019), ultraprecision machine tools (Wu and Xu, 2018),
wafer stages (Evers et al., 2019), energy harvester (Lu et al.,
2020) and so on. Recently, these systems such as AFMs for
video-rate imaging (Yong et al., 2013) that require high-
speed motion have posed new challenges on high-bandwidth
and precision tracking of piezoelectric nanopositioning
stages. However, the inherent hysteresis nonlinearities and
vibrations caused by the lightly damped resonant dynamics
of these stages limit the improvement of the tracking per-
formance (Gu et al., 2014).

To compensate for hysteresis nonlinearity–caused error
effectively, model-based feedforward control methods are
the most common approaches via constructing inverse
hysteresis models (Cao and Chen, 2015; Rakotondrabe,
2017; Sabarianand et al., 2020). Various models such as
Preisach model (Liu et al., 2012), Bouc–Wen model
(Habineza et al., 2015), and Maxwell resistive capacitor
model (Liu et al., 2014; Shan et al., 2016) have been
adopted to mitigate hysteresis. It should be noted that lots of
parameters should be identified to improve modeling ac-
curacy. Alternatively, to simplify the controller design, the
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overall complexmodel of piezoelectric nanopositioning stages
are composed of the static hysteresis and linear part (Gu et al.,
2015), and the high-gain feedback controllers can improve
low-frequency tracking performance significantly (Ling et al.,
2020). However, as themotion speed increases, the performance
is degraded severely for the lightly damped modes (Eielsen
et al., 2013; Habineza et al., 2017; Verbaan et al., 2017).

Traditionally, the built-in integral or proportional–integral
(PI) controllers are commonly used in commercial piezo-
electric nanopositioning stages for the ease of implemen-
tation, but the closed-loop bandwidth is restricted within 2%
of the first resonance frequency of the stages (Yong et al.,
2012). To push the improvement of tracking bandwidth, some
general feedback control strategies are reported to improve
the tracking performance during high-speed motion, such as
robust control (Habibullah et al., 2019; Kang et al., 2020;
Shahabi et al., 2020), adaptive control (Ling et al., 2019;
Zhang et al., 2017), sliding mode control (Xu, 2017) and so
no. Also, for periodic signals, repetitive controllers can pro-
vide the required performance for the signal generator
wrapped in this control scheme (Li et al., 2016b). How-
ever, the implementation of these high-order controllers in
practical applications may require advanced digital signal
process systems.

Alternatively, low-order negative-imaginary (NI) damp-
ing controllers can increase the damping ratio of reso-
nant modes effectively and provide sufficient robustness
for systems with collocated position sensors such as nano-
positioners (Petersen, 2016; Petersen and Lanzon, 2010).
These controllers, such as integral resonant control (Bhikkaji
and Moheimani, 2008; Namavar et al., 2013), positive po-
sition feedback control (Aphale et al., 2008; Mahmood and
Moheimani, 2009), modified positive velocity and position
feedback control (San-Millan et al., 2015), resonant control
(RC) (Das et al., 2015), and polynomial-based control
(Namavar and Aphale, 2014) provide fixed structures and
lower computational complexity, which makes them simple
in design and implementation. Note that these NI damping
controllers are elaborately designed for the typical second-
order models, which are usual NI systems. Therefore, the
positive feedback stability can be described as that where the
dc loop gain is less than unity as the model and the controller
are both NI with one of them being strictly NI (Lanzon and
Petersen, 2008; Petersen, 2016).

However, in practical piezoelectric nanopositioning
stages, the identified model according to the data collected
from position sensors may not be NI because of the delay in
sensors or actuators (Das et al., 2014b). As a result, the
above stability criteria are not suitable. In addition, the
controller parameters are so conservative that resulting in
a low gain of the controller and lower closed-loop band-
width through small-gain theorem that requires the loop
gain to be less than 1 in the overall frequency intervals
(Skogestad and Postlethwaite, 2007). To overcome the
drawbacks, a mixed NI and small-gain approach was

proposed to demonstrate the stability (Patra and Lanzon,
2011) and applied to design an RC for the piezoelectric tube
scanner (Das et al., 2014b). Moreover, a mixed passivity,
NI, and small-gain approach was used for a passive
damping controller design (Das et al., 2014a). Furthermore,
the positive acceleration, velocity, and position feedback
(PAVPF) damping controller was used to realize the arbi-
trary closed-loop poles for a third-order transfer function (Li
et al., 2017). It should be noted that although the tracking
bandwidth is improved significantly via implementing these
methods, the closed-loop bandwidth is still less than the first
resonant frequency of the stages.

The study is motivated to achieve the tracking bandwidth
exceeding the first resonant frequency of the piezoelectric
nanopositioning stages with load uncertainty. Inspired by
the existing pole shift technique in Namavar and Aphale
(2014), a novel pole placement method is proposed to shift
the resonant frequency. Differences between the methods in
Namavar and Aphale (2014) and this work lie in: (1)
a second-order system is focused in Namavar and Aphale
(2014), which is extended into a third-order system in this
work; (2) stability analysis is not included in Namavar and
Aphale (2014), which is accomplished using a mixed
passivity, small gain, and Nyquist stability criterion in this
work; (3) a nominal system and simulation results are
discussed in Namavar and Aphale (2014), which are ex-
tended to an actual platform with load uncertainty and
experimental results in this work.

Thus, the method in this work can be regarded as an ex-
tension from the work in Namavar and Aphale (2014) with
more practicability and applicability for bandwidth enhance-
ment of fixed-order damping controllers in Bhikkaji and
Moheimani (2008), Namavar et al. (2013), Aphale et al.
(2008), San-Millan et al. (2015), Mahmood and Moheimani
(2009) and Das et al. (2015). Using the proposed pole
placement method, a bandwidth-enhanced positive accelera-
tion, velocity, and position feedback (BEPAVPF) damping
controller is then designed to enhance the bandwidth sub-
stantially. Compared with the existing PAVPF control in Li
et al. (2017), the tracking bandwidth is notably improved.
Comprehensive experiments based on a nanopositioning stage
with load uncertainty were conducted to evaluate the designed
damping controller. Herein, the main contribution of this study
is twofold:

1. A bandwidth enhancement damping method is pro-
posed for piezoelectric nanopositioning stages to
make the closed-loop bandwidth surpass the first
resonant frequency;

2. A mixed passivity, small gain, and Nyquist stability
criterion is proposed to analyze the stability and robust
stability of the designed controller under load variations.

The rest of the article is organized as follows. In Section 2,
the system setup is described in detail. The controller design
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of the BEPAVPF damping controller in tandem with PI
tracking controller and the relevant stability analysis are
presented in Section 3. Section 4 gives detailed controller
implementation and analysis. Experiments results on a pie-
zoelectric nanopositioning stage and comparisons with dif-
ferent controllers are elaborated in Section 5, and Section 6
gives the conclusions.

2. System description

2.1. Experimental setup

The experimental setup is shown in Figure 1. A piezoelectric
nanopositioning stage (model: P-561.3CD from Physik In-
strumente) is developed, and the x axis is used to evaluate the
performance. The control input voltage is generated by 16-bit
digital-to-analog converters via the data acquisition card PCI
6289 of National Instruments Corporation and subsequently
amplified by a piezo amplifier module (model: E-503.00
from Physik Instrumente) with an output range of 0–100 V
for the piezoelectric nanopositioning stage. The output po-
sition normalized as 0–10 V and read via a sensor monitor
(model: E-509.C3A from Physik Instrumente) is passed to
the data acquisition card PCI 6289 by 18-bit analog-to-digital
converters. The overall control system is built in Simulink
real-time environment on the host computer and executed
real time on the target computer. In this study, the sample
frequency of the system is set to 10 kHz.

2.2. System identification

A sine-sweep input between 0.1 Hz and 500 Hz is applied to
the x axis to identify the linear dynamic model of the pi-
ezoelectric nanopositioning stage. By using the system
identification toolbox in MATLAB, the nominal continuous
transfer function without load Gn(s) with the Laplace op-
erator s can be identified as

GnðsÞ ¼ 12:41s2 � 1:568 × 105sþ 4:074 × 105

s3 þ 441:7s2 þ 1:762 × 105sþ 6:818 × 105
(1)

In terms of robustness, another challenge of the stage is
that the first resonant mode frequency varied with the load
on it. Figure 2 shows the frequency responses as the mass on
the stage increasing from 0 g to 300 g. The variation of the
resonance frequency of the stage is evident from 210 Hz to
190 Hz. The sensitivity to load may result in the unstable
closed-loop system. Therefore, the control objective of this
study is to design a low-order damping controller to achieve
the closed-loop bandwidth exceeding the first resonant
frequency and remain robust to uncertainties caused by the
loads for the third-order system.

3. Controller design

3.1. Bandwidth-enhanced PAVPF damping control

To improve the tracking bandwidth, a BEPAVPF damping
control is developed as Figure 3, where the plant Gn(s) and
damping controller Cd(s) are connected with positive
feedback. uðtÞ is the input of the damped loop, and yðtÞ
denotes the position output of the system. For the ease of
calculation in the following section, the third-order plant
Gn(s) is expressed with known parameters as

GnðsÞ ¼ n2s2 þ n1sþ n0
s3 þ d2s2 þ d1sþ d0

(2)

where n2, n1, n0, d2, d1, and d0 are the nominal parameters
of the system.

To enhance the closed-loop bandwidth and damp the
resonant mode, the output of BEPAVPF damping con-
troller is the synthesis of acceleration, velocity, and po-
sition signals based on the system output (Das et al.,
2014a). The transfer function of the controller can be
described as

CdðsÞ ¼ nc2s2 þ nc1sþ nc0
s2 þ dc1sþ dc0

(3)

Figure 1. Experimental setup of the piezoelectric nanopositioning stage. (a) Experimental platform. (b) Block diagram of the control

system.
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where nc2, nc1, nc0, dc1, and dc0 are the parameters to be
calculated in the following content. According to the block
diagram in Figure 3, the damped loop transfer function from
control input uðtÞ to output displacement yðtÞ can bewritten as

GdðsÞ ¼ GnðsÞ
1� GnðsÞCdðsÞ (4)

Substituting equations (2) and (3) into (4), it can be
deduced that the poles of Gd(s) are the roots of the
polynomial

PðsÞ ¼ �
s3 þ d2s

2 þ d1sþ d0
��
s2 þ dc1sþ dc0

�

� �
n2s

2 þ n1sþ n0
��
nc2s

2 þ nc1sþ nc0
� (5)

Then, equation (5) can be expanded as a five-order
polynomial

PðsÞ ¼ s5 þ ðdc1 þ d2 � n2nc2Þs4
þ ðd1 þ dc0 þ d2dc1 � n2nc1 � n1nc2Þs3
þ ðd2dc0 þ d1dc1 þ d0 � n2nc0 � n1nc1 � n0nc2Þs2
þ ðd1dc0 þ d0dc1 � n1nc0 � n0nc1Þs
þ ðd0dc0 � n0nc0Þ

(6)

To enhance the tracking bandwidth and damp the res-
onance, the desired poles of Gd(s) should be allocated elab-
orately to achieve the anticipated performance. Assume

that fpjdg
5

j are the desired pole positions of the closed-loop
system and for the proposed BEPAVPF damping controller
in this study, they are given by

p1d ¼ αðReðpGÞ þ ImðpGÞiÞ
p2d ¼ αðReðpGÞ � ImðpGÞiÞ
p3d ¼ αβ ReðpGÞ þ α ImðpGÞi
p4d ¼ αβ ReðpGÞ � α ImðpGÞi
p5d ¼ γ

(7)

where Re(pG) and Im(pG) represent the real part and
imaginary part of the complex poles in the third-order
transfer function equation (2). α, β, and γ are the parame-
ters to be designed with α > 1, β > 1, and γ < 0.

It should be mentioned that for the traditional method,
the desired poles are placed to make only the real part
further away from the imaginary axis, that is α = 1, β > 1,
and p1d ¼ p3d; p

2
d ¼ p4d . Figure 4 demonstrates the differ-

ent desired locations of the damped-loop poles. This kind
of damping controllers can be found in Mahmood and
Moheimani (2009) and Li et al. (2017) to damp the reso-
nance. However, the resonant frequency of the damped
transfer function is still nearly unaltered in comparison with
the original open-loop resonance so that the tracking
bandwidth remains less than the original first resonant
frequency. In this study, the first pair of desired complex
poles is moved along the constant damping ratio line to push
the resonant frequency to be α times greater than the original.
Based on that, the second pair of desired complex poles is
allocated to make the real part β times larger than the first
pair of poles. The third pole is located in the negative-real
axis with γ distance. The proposed pole placement can shift
a higher resonant frequency and damp the resonance at the
same time to achieve bandwidth-enhanced performance.

To obtain the controller parameters, the characteris-
tic equation of the damped loop with desired poles can be
given as

QðsÞ ¼ �
s� p1d

��
s� p2d

��
s� p3d

��
s� p4d

��
s� p5d

�

¼ s5 þ K4s
4 þ K3s

4 þ K2s
2 þ K1sþ K0

(8)

Figure 3. Block diagram of the system with bandwidth-enhanced

positive acceleration, velocity, and position feedback damping

controller through positive feedback.

Figure 2. Open-loop frequency responses of the piezoelectric

nanopositioning stage with different loads.
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where

K4 ¼�2αð1þβÞReðpGÞ� γ

K3 ¼
�
α2þ2 ImðpGÞ2þα2β2þ4ReðpGÞ2β

�
α2

þ2ReðpGÞαγð1þβÞ
K2 ¼�2ReðpGÞα3

�
α2β2þ ImðpGÞ2þReðpGÞ2β

þβImðpGÞ2
��2ReðpGÞαγð1þβþ2ReðpGÞαβÞ

K1 ¼ 2ReðpGÞα3γ
�
α2β2þ ImðpGÞ2þReðpGÞ2βþβ ImðpGÞ2

�

þα4
�
ReðpGÞ2þ ImðpGÞ2

��
ReðpGÞ2β2þ ImðpGÞ2

�

K0 ¼�α4γ
�
ReðpGÞ2þ ImðpGÞ2

��
ReðpGÞ2β2þ ImðpGÞ2

�

(9)

To determine the desired poles of the damped system
with BEPAVPF, the coefficients of equation (8) should
match those of equation (6), that is

K4 ¼ dc1 þ d2 � n2nc2
K3 ¼ d1 þ dc0 þ d2dc1 � n2nc1 � n1nc2
K2 ¼ d2dc0 þ d1dc1 þ d0 � n2nc0 � n1nc1 � n0nc2
K1 ¼ d1dc0 þ d0dc1 � n1nc0 � n0nc1
K0 ¼ d0dc0 � n0nc0

(10)

Note that the above equations can be written in the
matrix form as

Ax ¼ b (11)

where

A ¼

2
66664

1 0 �n2 0 0
d2 1 �n1 �a2 0
d1 d2 �n0 �n1 �n2
d0 d1 0 �n0 n1
0 d0 0 0 �n0

3
77775

(12)

x ¼ ½ dc1 dc0 nc2 nc1 nc0 �T (13)

b ¼ ½K4 � d2 K3 � d1 K2 � d0 K1 K0 �T (14)

Combining equations (10)–(14), the parameters can be
calculated.

3.2. Stability analysis

Stability of the proposed controller can be analyzed through
the mixed passivity, small-gain, and Nyquist stability cri-
terion by dividing different frequency-dependent intervals.
Considering a single-input single-output real rational stable
transfer function MðsÞ, the definition of passive, negative
passivity, and finite-gain properties are given below.

Definition 1 (Petersen and Lanzon, 2010). The stable
systemMðsÞ is said to be passive for all ω frequencies such
that s = jω is not a pole of MðsÞ if it follows that

MðjωÞ þM ∗ðjωÞ ≥ 0 (15)

whereM∗(jω) is the complex conjugate transpose ofM(jω).
From the Nyquist plot, equation (16) is also which the phase
of M(jω) satisfies

∠MðjωÞ 2 ½ �π=2; π=2� (16)

Definition 2 (Petersen and Lanzon, 2010). The stable
system MðsÞ is said to be of negative passivity for all ω
frequencies such that s = jω is not a pole of MðsÞ if it
follows that

Figure 4. Schematic diagram of different desired locations of the damped-loop poles. (a) The traditional method. (b) The proposed

method.
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�MðjωÞ �M ∗ðjωÞ ≥ 0 (17)

Equation (17) is also which the phase of M(jω) satisfies

∠MðjωÞ 2 ½π=2; 3π=2� (18)

Definition 3 (Das et al., 2014a). The stable system MðsÞ
is said to be finite-gain system bounded by a gain k with
0 ≤ k < ∞ if

k ¼ inf
n
k : �MðjωÞM ∗ðjωÞ þ k

2
≥ 0

o
(19)

for all ω, where k stands for the upper bound of the gain k.
To analysis the stability of the controller as shown in

Figure 3, the frequency intervals with different properties
are described as:

1. Let ψP be frequency intervals [ω1, ω2] with 0 < ω1 ≤
ω2, whereGn(s) satisfies the passive property and Cd(s)
satisfies the negative-passivity property or vice versa.

2. Let ψFG be frequency intervals [ω3, ω4] with 0 ≤ ω3 ≤
ω4, whereGn(s) is finite-gain bounded by a gain k1 and
Cd(s) is finite-gain bounded by a gain k2 with k1k2 < 1.

3. Let ψN be frequency intervals [ω5, ω6] with 0 ≤ ω5 ≤
ω6, where either Gn(s) or Cd(s) satisfies the above two
conditions.

Theorem 1. Consider the strictly proper stable transfer
function Gn(s) and stable proper Cd(s) with relative degree
0 and the two systems are connected as in Figure 3, where
ψP [ ψFG [ ψN = [0, ∞) denotes the overall positive fre-
quency set. For k1 > |Gn(0)| and k2 > |Cd(0)|, if the positive
feedback interconnection is stable, it follows that

k1k2 < 1 (20)

and in the frequency interval ψN, Re(Gn(jω)Cd(jω)) = 1
has no solution, or

∏
m

i¼1
ImðGnðjωiÞCdðjωiÞÞ > 0 (21)

where wi 2 {1, 2,…, m} are satisfied with Re(Gn(jωi) ×
Cd(jωi)) = 1.

Proof 1. The above theorem can be proved by three de-
pendent triplets, that is ψP, ψFG, and ψN.

1. For ω 2 ψP, according to Definition 1 and Definition
2, the phases of Gn(s) and Cd(s) satisfy ∠Gn(jω) 2
[�π/2, π/2] and ∠Cd(jω) 2 [π/2, 3π/2] respectively,
where Gn(s) is passive and Cd(s) is of negative pas-
sivity. With the positive feedback of the two systems,
it can be equivalent to negative feedback, where both

Gn(s) and –Cd(s) are passive. Therefore, the phase
of�Gn(s)Cd(s) will be∠Gn(jω)Cd(jω)2 [0, π] and its
Nyquist plot cannot intersect the negative real axis.
Consequently, �Gn(s) Cd(s) will not encircle (�1, 0)
and satisfy the Nyquist stability criterion. A similar
result can be deduced when Gn(s) is negative passive
and Cd(s) is passive.

2. For ω 2 ψFG, according to Definition 3, there exist k1
and k2 so that jGnðsÞj2 < k21 and jCdðsÞj2 < k22 . Hence,
taking small-gain theorem and |Gn(s)Cd(s)| < k1k2 into
consideration, the feedback of Gn(s) and Cd(s) is stable
if and only if k1k2 < 1 with k1 > |Gn (0)| and k2 > |Cd (0)|.

3. For ω 2 ψN, neither the passivity theorem nor small-
gain theorem can determine the stability. According to
the Nyquist stability criterion, if the Nyquist plot
lies in the left plane of V(jω) with Re(V(jω)) = 1, it will
not encircle (1, 0), so Re(Gn(jω) Cd(jω)) = 1 should
have no solution. If ∏m

i¼1ImðGnðjωiÞCdðjωiÞÞ ¼ 0
exists for ωi, the Nyquist plot should pass the point
(1, 0), resulting in the unstable closed-loop system;
if∏m

i¼1ImðGnðjωiÞCdðjωiÞÞ < 0, the Nyquist plot must
intersect the positive real axis, which will make the plot
encircle (1, 0) for limω→∞Gn(jω)Cd(jω) = 0. Therefore,
equation (21) is satisfied. This concludes the proof of
Theorem 1.

It should be noted that Cd(s) is not a strictly proper
transfer function, limω→∞ Cd(jω) is not zero with high-pass
property. The gain ofCd(s) may be not bounded by the finite-
gain k2. As a result, the stability analysis in Patra and Lanzon
(2011) and Li et al. (2017) is not suitable for the proposed
BEPAVPF damping controller because of the requirement
of limω→∞Cd(jω) = 0. In this study, the stability at high-
frequency interval ω 2 ψN is determined by equation (21).

3.3. Tracking controller design and stability

In this study, the proposed BEPAVPF controller is designed
to extend the tracking bandwidth and damp the resonance.
To address the static low-frequency hysteresis nonlinearity
and improve the robust ability to model uncertainties, a PI
controller is adopted in the outer feedback loop, as shown in
Figure 5, where Δ(s) is the transfer function of multipli-
cative uncertainty of the system, r(t) is the reference signal,
v(t) and d(t) are the input and output signals of Δ(s) re-
spectively. Ct(s) is the PI tracking controller expressed as

CtðsÞ ¼ kp þ ki
s

(22)

where kp and ki are the proportional gain and integral gain,
respectively. It is well known that an accurate model is
usually difficult to obtain.

The stability of the positive feedback interconnection
between Gn(s) and Cd(s) is given in Theorem 1. To give the
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overall stability of the system with the tracking controller
Ct(s), Theorem 2 is introduced as follows.

Theorem 2. If the parameters in Cd(s) satisfy Theorem 1,
the stability of the closed-loop system with tracking con-
troller Ct(s) is given by

kGnðsÞðCtðsÞ � CdðsÞÞk∞ < 1 (23)

Proof 2. According to the transfer function of the con-
troller equation (4), the closed-loop transfer function with
Ct(s) can be expressed as

TðsÞ ¼ CtðsÞGnðsÞ
1þ GnðsÞðCtðsÞ � CdðsÞÞ (24)

Therefore, based on the small-gain theorem, the closed-
loop stability can be expressed as equation (23). This
concludes the proof of Theorem 2.

Moreover, the load on the piezoelectric nanopositioning
stage can result in the variation of the resonance so that it is
crucial to analyze the robust stability of the overall closed-
loop system.

Theorem 3. Let the actual plant be described as G(s) = (1 +
Δ(s))Gn(s), where Δ(s) is the multiplicative model un-
certainty. Assume that the damping control Cd(s) and
tracking controller Ct(s) can stabilize the closed loop for
Gn(s). The robust stability of the closed-loop system is
given by

����
GnðsÞðCdðsÞ � CtðsÞÞ

1� GnðsÞðCdðsÞ � CtðsÞÞΔðsÞ
����
∞

< 1 (25)

Proof 3. According to Figure 5, the transfer function from
d(t) to v(t) is derived as

TΔðsÞ ¼ GnðsÞðCdðsÞ � CtðsÞÞ
1� GnðsÞðCdðsÞ � CtðsÞÞ (26)

Therefore, the control scheme in Figure 5 for internal
robust analysis can be reformulated as shown in Figure 6.

Based on the small-gain theorem, the condition for robust
stability can be deduced as

kTΔðsÞΔðsÞk∞< 1 (27)

This concludes the proof of Theorem 3.

Remark 1. In this study, we should emphasize Theorem 1
for proving the stability of damping loop (the main con-
tribution), Theorem 2 for closed-loop stability, and Theo-
rem 3 for robust stability.

4. Controller implementation

4.1. Implementation of the damping controller

For the piezoelectric nanopositioning stage described in
Section 2, the BEPAVPF damping controller is designed
first to extend the bandwidth. Based on the equations (10)–
(14), the calculated damping controller with α = 1.45, β = 40
and γ = �800 is given by

CdðsÞ ¼ �23 s2 � 1:969 × 104s� 1:843 × 107

s2 þ 1520 sþ 1:271 × 107
(28)

To analysis the stability of the positive connection be-
tween Gn(s) and Cd(s), the finite gains are chosen as k1 =
0.61 > |Gn (0)| = 0.597 and k2 = 1.62 > |Cd (0)| = 1.449 that
satisfy k1k2 = 0.9882 < 1. Figure 7 demonstrates the fre-
quency intervals with different properties. It is clear that in
the frequency intervals [0, 921.8] rad/s and [3363.9, 5970]
rad/s,Gn(s) has passive property whereasCd(s) has negative-
passivity property, which is contained in ψP. Gn(s) and Cd(s)
are bounded by k1 and k2 respectively, in the frequency
intervals [921.8, 948.8] rad/s, which satisfies ψFG. In the
frequency intervals [941.8, 1419.1] rad/s, Gn(s) has pas-
sive property whereas Cd(s) has negative-passivity prop-
erty, which is contained in ψN. The remaining intervals
[1419.1, 3363.9] rad/s and [5970, ∞] rad/s compose the
ψN, which meets the condition of equation (21) from the

Figure 5. Block diagram of the overall control scheme of the

system with uncertainties.
Figure 6. Reformulation of block diagram for robust stability

analysis.
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Nyquist plot in Figure 7(c). Therefore, in the overall fre-
quency interval, Theorem 1 is satisfied for equations (1) and
(28).

In terms of the frequency domain, Figure 8 shows the
comparisons between open-loop transfer function and the
system with traditional PAVPF and proposed BEPAVPF.

The damped loop with BEPAVPF shifts the resonance to
288.07 Hz, which is far beyond the original at 210.08 Hz.
Moreover, the resonant gain is damped from 18.07 dB for
open loop to 2.58 dB. Although the PAVPF achieves a small
resonant gain of 0.38 dB, the resonant frequency is merely
170.29 Hz.

4.2. Implementation of the tracking controller

For the tracking control gains, they can be preliminarily
initialized based on Theorems 2 and 3. The robust stability
condition can be verified through simulation cases. Sub-
sequently, considering that the actual experimental platform
suffers from the inevitable uncertainties, the parameters can
be tuned and determined elaborately and carefully by an
iterative trial and error method to get the proper anticipated
performance for each specified controller in the experi-
ments. This ensures that the comparisons of outcomes
achieved are suitably fair, as each specified controller has
essentially been appropriately and properly tuned.

Finally, in this work, the gains of tracking controllers are
given as kp = 0.001, ki = 172.89 for PI, kp = 0.336, ki = 432
for the traditional PAVPF, and kp = 0.95751, ki = 1389.45
for the proposed BEPAVPF.

4.3. Closed-loop responses in time and frequency
domain

To compare the achieved closed-loop responses (i.e. rising
time, overshoot, bandwidth, and frequency characteristics)
of the PI, PI + PAVPF, and PI + BEPAVPF, time and fre-
quency domain responses are depicted in Figures 9–11.

4.3.1. Step responses. As shown in Figure 9, it can be seen
that all the three closed-loop schemes are better than open
loop in terms of steady state errors. However, owing to the
limited bandwidth of the PI control alone, the rising time is

Figure 7. Frequency intervals for stability analysis of the pro-

posed bandwidth-enhanced positive acceleration, velocity, and

position feedback (FG: finite-gain property, P: passive property,

and NP: negative-passivity property). (a) Frequency intervals of

Gn(s). (b) Frequency intervals of Cd(s). (c) Nyquist plot of Gn(s)Cd(s)
for ψN.

Figure 8. Frequency responses of the system in open loop, with

PAVPF and with BEPAVPF. PAVPF: positive acceleration, velocity,

and position feedback; BEPAVPF: bandwidth-enhanced positive

acceleration, velocity, and position feedback.

Figure 9. Step responses of the system with the three

controllers.
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obviously larger than PI + PAVPF, and PI + BEPAVPF. In
addition, the designed PI + BEPAVPF achieves a rising time
of 2.9 ms which makes an improvement of 37% from that of
PI+PAVPF. The overshoots of PI + PAVPF and PI + BE-
PAVPF are 10% and 6%, respectively. Herein, the results of
step responses indicate that the designed PI + BEPAVPF
obtains smaller rising time and overshoot than the tradi-
tional PI + PAVPF.

4.3.2. Frequency responses. According to Figure 10, the
commonly used PI controller has the lowest bandwidth of
23.5 Hz, and the proposed method achieves 282.5 Hz
bandwidth, which is 1.732 times more than PI + PAVPF
with 103.4 Hz and exceeds the open-loop resonant fre-
quency at 210.08 Hz. Moreover, bode diagrams of TΔ(s)
Δ(s) with different loads varying from 50 g to 300 g are
illustrated in Figure 11, the maximal kTΔ(s)k∞ is 0.985 < 1,
which satisfies Theorem 3.

5 Experimental result

5.1. Suppression of low frequency hysteresis

In this study, the hysteresis nonlinearity is treated as a low-
frequency external disturbance without building hysteresis
modeling for simple implementation. Experimental results
of hysteresis curves with different controllers are displayed
in Figure 12 when a 1 Hz triangular wave with 5 μm peak-
to-peak amplitude is injected into x axis. For open-loop
tracking, the relative maximal error (ermax) is 16.93%,
which exhibits evident hysteresis nonlinearity. Although the
standalone PI controller can suppress hysteresis partly, the
ermax of 1.39% is still large for precision tracking. The PI +
PAVPF and PI + BEPAVPF have similar results, that is
0.87% and 0.85% respectively, which demonstrates that the
low-frequency hysteresis is mitigated substantially.

5.2. Tracking performance of high speed triangular
waves

To validate the high-speed tracking performance of the
proposed method, the triangular waves widely used in AFMs
as references of the fast motion axis for raster scanning are
performed on the piezoelectric nanopositioning stage.

5.2.1. Tracking results without load. To compare the tracking
performance of the PI, PI + PAVPF, and PI + BEPAVPF
controllers, Figure 13 shows the experimental results as ref-
erences with different frequencies input at 5 Hz, 10 Hz,
25 Hz, and 50 Hz. The root-mean-square errors (erms) and
maximal errors (emax) are tabulated in Table 1 in detail. It can

Figure 11. Robust stability of the proposed controller with

different loads.

Figure 10. Closed-loop frequency responses of the system with

different controllers.

Figure 12. Experimental results of hysteresis suppression with

different controllers. Tracking performance of high-speed tri-

angular waves.
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be seen that both PI+PAVPF and PI + BEPAVPF controllers
significantly improve the tracking performance compared
with the PI control. With the frequency of input reference
increasing, the tracking performance of the PI controller is
severely degraded for the limited bandwidth. As an illus-
tration, the experimental results with 25 Hz triangular waves
are discussed. The performances of PI + PAVPF and PI +
BEPAVPF improve 39.58%, 61.47% for erms and 35.55%,
54.33% for emax respectively, in comparison with PI con-
troller. Besides, it can be found that the proposed PI +
BEPAVPF also demonstrates better performance than PI +
PAPVPF with the errors reducing by 36.23% and 29.14% in
terms of erms and emax. A similar conclusion can also be
made from the other references as displayed in Table 1.

Remark 2. It can be observed from Figure 13 that the errors
increase in high-frequency tracking cases. The main reason
for the proposed PI + BEPAVPF scheme lies in the in-
creased phase lag instead of the nonlinearity effect. The
phase lag is resulted from the limited bandwidth as the
50 Hz raster scanning is relatively high for the used platform
in this study. However, in the AFM scanning applications,
perfectly delayed tracking is better than imperfect timely
tracking for which the phase lags of the recorded system
outputs fixed upon the controllers are designed (Li et al.,
2016a). To compare the tracking performances of different
controllers, the phase lags can be removed using some post-
processing techniques as equation (21) in Ling et al. (2019).
In this study, we did not shift the curves using equation (21)
in Ling et al. (2019), as even before shifting, the proposed

PI + BEPAVPF scheme can perform the best among the
three control schemes.

5.2.2. Tracking results with loads. As depicted in Figure 2,
different loads make the first resonance shift from 210 Hz to
190 Hz. Therefore, in this subsection, the 25 Hz triangular
signals are fed into the closed-loop system with different
controllers to test the robust stability. Note that the proposed
controller in this study is designed for the unloaded model
and its parameters remain unchanged during the experi-
ments. The tracking performance with different loads is
plotted in Figure 14, and the statistical results of errors
are recorded in Table 2. It is evident that the proposed

Figure 13. Experimental results of different controllers without load. (a) Tracking results at 5 Hz. (b) Tracking results at 10 Hz. (c)

Tracking results at 25 Hz. (d) Tracking results at 50 Hz. (e) Tracking errors at 5 Hz. (f) Tracking errors at 10 Hz. (g) Tracking errors at

25 Hz. (h) Tracking errors at 50 Hz.

Table 1. Statistical results of tracking errors with different ref-

erences (unit: μm).

Error (μm) PI PI + PAVPF PI + BEPAVPF

5 Hz erms 0.168 0.081 0.042

emax 0.194 0.121 0.074

10 Hz erms 0.323 0.163 0.156

emax 0.373 0.236 0.166

25 Hz erms 0.667 0.403 0.257

emax 0.889 0.573 0.406

50 Hz erms 0.838 1.003 0.492

emax 1.512 1.502 0.710

PI: proportional–integral; PAVPF: positive acceleration, velocity, and

position feedback; BEPAVPF: bandwidth-enhanced positive acceleration,

velocity, and position feedback.
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PI + BEPAVPF damping controller achieves the best
performance compared with PI and PI + PAVPF con-
trollers for each load. For the PI + BEPAVPF, the erms

varies between 0.255 μm and 0.258 μm and the emax

varies between 0.404 μm and 0.409 μm. The relative
change rates are less than 0.39% and 0.74% in com-
parison with the statistical error without load, which
demonstrates that the proposed method is not sensitive to
the model variation and obtains sufficient robustness to
uncertainties.

6. Conclusion

In this study, the BEPAVPF damping controller for a third-
order piezoelectric nanopositioning stage is developed to push

the resonant frequency to a substantially higher frequency
and damp the corresponding resonance through a novel pole
placement method to achieve bandwidth exceeding the first
resonant frequency. Through integrating with a high-gain PI
tracking controller, the tracking performance is enhanced
further. The stability of the positive connection between the
plant and BEPAVPF is analyzed via a mixed passivity, small-
gain approach, and Nyquist theorem. The robust stability
condition of the overall scheme is also derived in this study
to handle load uncertainties. Experimental tracking results
of triangular waves under different scenarios are given to
evaluate the performance of the proposed control approach
in comparisonwith PI controller and traditional PAVPF control
scheme. Hence, this study provides a solution to break through
the inherent limitation of the lightly damped modes of a pie-
zoelectric nanopositioner for high-speed raster scanning.

The future work will take the effect of rate-dependent
hysteresis nonlinearity into consideration, especially for the
large stroke motion of the stage.
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Figure 14. Experimental results of different controllers with loads. (a) Tracking results at 50 g load. (b) Tracking results at 100 g load.

(c) Tracking results at 200 g load. (d) Tracking results at 500 g load. (e) Tracking errors at 50 g load. (f) Tracking errors at 100 g load.

(g) Tracking errors at 200 g load. (h) Tracking errors at 300 g load.

Table 2. Statistical results of tracking errors with different loads

(unit: μm).

Error (μm) PI PI + PAVPF PI + BEPAVPF

50 g erms 0.672 0.399 0.256

emax 0.891 0.582 0.409

100 g erms 0.671 0.399 0.255

emax 0.888 0.578 0.404

200 g erms 0.671 0.396 0.255

emax 0.884 0.578 0.405

300 g erms 0.668 0.402 0.258

emax 0.892 0.579 0.408

PI: proportional–integral; PAVPF: positive acceleration, velocity, and po-

sition feedback; BEPAVPF: bandwidth-enhanced positive acceleration, ve-

locity, and position feedback.
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