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a b s t r a c t

The versatile and effective piezoelectric ultrasonic motor (PUM) has been widely used in
many significant industrial and scientific applications, including precision positioning sys-
tems and surgical devices. However, the inherent friction, hysteresis nonlinearity, model
uncertainties as well as various invariably presented external disturbances bring great
challenges on the precision motion of PUM. In this development, a novel integral terminal
sliding-mode-based adaptive integral backstepping control (ITSMAIBC) is formulated to
accommodate theses adverse impacts and retain high tracking precision. In particular,
the second-order auxiliary differential equations based on the integral terminal sliding-
mode surface are constructed to obtain the property of finite-time convergence and desired
steady-state performance. Through employing integral backstepping methodology with
the auxiliary equations, the asymptotic stability is guaranteed and a high-order sliding-
mode control (SMC)-like performance is also achieved to relieve the chattering phe-
nomenon. An adaptive law is further incorporated into the proposed controller to estimate
the upper bound of the total disturbance. The robust stability is proven by the Lyapunov
theory. Moreover, the implementation of ITSMAIBC is simple without any high-order
derivative or observer. The actual experiments on a PUM verify the effectiveness of the
controller through tracking continuous sinusoidal waves and discontinuous triangular
waves with different frequencies and amplitudes, and the proposed scheme achieves the
best tracking performance in comparison with three benchmark controllers. A surgical
operation on a mock membrane experimental system is also performed to validate the
practical application of the proposed method on ear surgery.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Precision motion with a resolution at micrometer or nanometer is a crucial aspect in the area of industrial and scientific
applications, such as atomic force microscopes [1], dexterous micro manipulation [2], fast tool servo system [3], and so on.
Therefore, piezoelectric-actuated devices have been developed widely in order to achieve the anticipated performance for
their advantages of fast response time, high stiffness, compact structure, and high resolution [4,5]. Among these, to achieve
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fast motion speed as well as large stroke simultaneously, the piezoelectric ultrasonic motor (PUM) has been designed and
used successfully in precision positioning system [6], and medical devices [7,8], showing great potential in practical
applications.

The PUM generates high-speed linear motion through a slider in coupling with a pretensioned stator, which is driven by a
piezoelectric actuator. The output of the piezoelectric actuator exerts pressure on the stator so that the resulted frictional
force between the slider and stator can drive the stage with theoretically unlimited travel distance [9]. According to the driv-
ing principle of PUM, the challenges mainly stem from the produced friction in order to achieve the precision motion. Fur-
thermore, the heat generated by the PUM with the increase of motion time or speed, and the inherent hysteresis can also
lead to an adverse impact on the final motion accuracy.

In order to compensate the inaccuracy giving rise by the hysteresis nonlinearity, the model-based feedforward technolo-
gies have been widely used with the established hysteresis models, including Bouc-Wen model [10], Preisach model [11],
Prandtl-Ishlinskii model [12] and so on. Furthermore, the Coulomb model [13], LuGre model [14], and Generalized
Maxwell-Slip (GMS) model [15] also have been developed to describe and compensate the frictional force. However, to
obtain the accurate descriptions and subsequently compensate the hysteresis and friction nonlinearities, lots of the model
parameters should be identified off-line or on-line, and the processes are time-consuming and complicated for practical
applications [16].

The intricate modeling process of hysteresis and friction can be avoided by the disturbance observer (DOB) methodology
[17]. In [18], a frequency-domain DOB integrated with repetitive control was designed to compensate hysteresis and
unknown disturbances. A sliding-mode-based DOB for motion tracking control of PUM was proposed to deal with the
adverse effects in [19]. A nonlinear friction observer was designed to estimate viscous and Coulomb friction with application
to rotary actuator with passive mechanical load in [20]. In [21], an extended state observer (ESO) and neural network control
were used to cancel disturbances and approximate unknown function for a piezoelectric actuator-based surgical device.
However, it is worth noting that these DOB-based methods are generally in cooperation with other tracking controllers to
improve the overall performance, which increases the computation load for real-time implementation.

The additional DOB can be removed for these controllers with high robustness. Alternatively, sliding-mode control (SMC)
provides effective and robust performance through taking the complex hysteresis and friction as external disturbances. In
[22], the hysteresis nonlinearity was mitigated by an output-based discrete-time SMC without any observer, and a
proportional-integral-derivative (PID) based SMC was proposed to eliminate the chattering problem in [23]. Furthermore,
in [24], an adaptive SMC with a nonlinear observer was developed for the PUM in the presence of friction, hysteresis as well
as unknown system parameters. To further improve the robustness to external disturbance and achieve globally asymptotic
stability, the backstepping methodology based on the Lyapunov criterion have been combined with SMC in some studies. In
[25], the backstepping technique was used to tackle the nonlinearity and the cross-couplings of a two-degrees-of-freedom
piezoelectric actuator. Besides, an integral backstepping SMC with a recurrent neural network was developed for a piezo-
flexural nanopositioning stage in [26] and a sliding-mode DOB-based adaptive integral backstepping control was proposed
to achieve high precision tracking for a piezoelectric nano-manipulator in [27]. However, the bandwidth of DOB also limits
the anticipated performance of the system with fast motion. Although the above methods improve the motion precision to
some extent, the chattering phenomenon and finite-time convergence, which are vital to tracking performance, are not taken
into consideration.

The finite-time convergence can be guaranteed by selecting proper sliding function [28] and the chattering phenomenon
will be alleviated by integrating with DOB [29] or high-order SMC [30]. In [31], an adaptive backstepping nonsingular fast
terminal SMC was proposed to increase the tracking performance of the robot manipulator. It is found that the singular value
may occur in the control force if the derivative of error equals to zero, and only the simulation results are provided.

Motivated by aforementioned essential issues, a novel integral terminal sliding-mode-based adaptive integral backstep-
ping control (ITSMAIBC) is proposed to achieve high precision and fast motion in this paper for a PUM, where complex hys-
teresis and friction nonlinearities, unknown heat disturbance, model uncertainties, and other external disturbance are
presented. The model of the system dynamics is firstly built. Next, the design of the proposed ITSMAIBC is given in detail,
and the system stability is analyzed by the Lyapunov theory. Then, the effectiveness of ITSMAIBC is also examined on the
PUM through comparative experiments with different reference scenarios, which test the feasibility of practical application.
Finally, the method is carried out on a surgical device to complete the surgical operation. The implementation of the pro-
posed control method is simple for practical application with the merits of no disturbance or state observer including in
the control scheme, and high robustness to hysteresis and friction nonlinearities, unknown disturbances as well as param-
eters’ uncertainties. The main contributions of this paper are listed below.

� A novel second-order auxiliary differential equations based on integral terminal sliding function with the position error is
proposed in this paper firstly. Being different from the PID-type [32] or conventional terminal [33] sliding mode function,
the auxiliary equations ensure the finite-time convergence performance as well as better tracking performance through
the integral action [34], and provide the foundation to deduce the proposed new and better performing control law.
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� A new integral backstepping methodology with the Lyapunov criterion based on the auxiliary differential equations is
utilized to make the sliding function and its time derivative to converge to zero so that the high-order SMC-like perfor-
mance and globally asymptotic stability are guaranteed. Furthermore, the integral actions of the virtual variables are aug-
mented in the control scheme to improve the steady-state performance and robustness, and the adaptive control law is
designed to estimate the upper bound of the total disturbance to further relieve chattering phenomenon.

� Detailed discussions on the proposed control scheme performance are conducted via theoretical analysis as well as exten-
sive and comparative experiments with different conditions to illustrate the superior performance of the proposed
method on the PUM, which presents significantly adverse impacts on tracking precision. The surgical operation on mock
membrane are also tested to validate the practical application of the proposed method for the ear surgery.

The remainder of this paper is structured as follows. The model of the PUM is established in Section 2. The proposed ITS-
MAIBC and the stability analysis are presented in Section 3. Section 4 gives the detailed experimental and implementation of
the controllers. Experiments on a PUM and comparisons of the results are elaborated in Section 5 and Section 6 gives the
conclusions.

2. Model of the Piezoelectric ultrasonic motor

The linear part of piezoelectric-actuated devices can be modeled as a second-order system generally [29,35]. Taking the
hysteresis, friction, and external disturbances into consideration, a diagram for the model of PUM is given in Fig. 1, which can
be represented as
m€xþ b _xþ kxþ f c þ f h þ f ed ¼ Tu; ð1Þ

wherem; b; k are the effective mass, damping and stiffness parameters. x is the output position of PUM, _x and €x are the veloc-
ity and acceleration, respectively. Furthermore, the input voltage to the piezoelectric actuator is denoted as u through a elec-
tromechanical ratio T of the system. f c and f h represent the friction and hysteresis nonlinearities, respectively, and f ed are the
unknown disturbances, such as heat and external disturbances which always exist in such system.

Assumption 1 [21,25,36] The f c; f h and f ed are bounded and satisfy the following conditions,
jf cj 6 Hc; jf hj 6 Hh; jf edj 6 Hed; ð2Þ

where Hc;Hh;Hed are positive constants.

However, the accurate parameters ofm; b; k are difficult to be obtained in practice. In this paper, the nominal or identified
parameters mn; bn; kn are defined to facilitate the controller design with the following relationships,
m ¼ mn þ Dm; b ¼ bn þ Db; k ¼ kn þ Dk; ð3Þ

where Dm;Db;Dk are the model uncertainties of the PUM with the upper bounds of Hm;Hb;Hk, respectively. Therefore, the
system (1) can be rewritten as
mn€xþ bn _xþ knxþ Dm€xþ Db _xþ Dkxþ f c þ f h þ f ed ¼ Tu; ð4Þ

Assumption 2 [33] The model uncertainties N ¼ Dm€xþ Db _xþ Dkx are bound by
jNj 6 Hmj€xj þHbj _xj þHkjxj ¼ HN; ð5Þ

where HN is a positive constant.

Based on the above assumptions, the total disturbance f t ¼ Dm€xþ Db _xþ Dkxþ f c þ f h þ f ed is also bounded as
jf t j 6 Hf t ¼ HN þHc þHh þHed; ð6Þ

where Hf t is an unknown parameter. Thus, the dynamics of PUM is simplified and converted as
mn€xþ bn _xþ knxþ f t ¼ Tu: ð7Þ
Fig. 1. A diagram for the model of PUM.
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The objective of this paper is to track the desired trajectory xd accurately without any disturbance/state observer at the
presence of complex and unknown disturbance f t .

Remark 1. In order to compensate the hysteresis or friction, the inverse compensators with different models, and
compensation it as a bounded disturbance are the two most preferred, effective and used methods [16,37,38]. It should be
noted that the accurate descriptions and subsequent compensation of the nonlinearities will involve the need to identify
quite a large number of the related model parameters. Therefore, the effects arising from hysteresis, friction, model
uncertainties and other disturbance are taken as bounded by positive values with the aim to attain an effective controller
design in this paper. These assumptions have been widely used in piezoelectric-actuated devices in [21,25,33,36], where the
unknown disturbances are treated as a total disturbance to avoid complex modeling of friction or hysteresis nonlinearity,
and there always exists an upper bound for actual system. Therefore, the robustness of the designed controller to these
adverse impacts is an important aspect to be taken into consideration in this paper.
3. Integral terminal sliding-mode-based adaptive integral backstepping control design

3.1. Integral backstepping controller with integral terminal sliding function

Due to the complex and unknown disturbance like friction and hysteresis, it is a challenge to achieve precision motion
tracking of PUM to meet the requirements of practical applications, such as surgical device [35]. Therefore, the goal of the
proposed control scheme is to minimize the tracking error defined as
e ¼ x� xd: ð8Þ

To achieve finite-time convergence of the desired reference and minimize steady-state error, an integral terminal sliding

function is adopted in this paper [28], which is defined as
r ¼ k1eþ k2

Z
jejasignðeÞdt: ð9Þ
Consider the Lyapunov candidate function
Ve ¼ 1
2
e2; ð10Þ
and its time derivative is given as
_Ve ¼ _ee: ð11Þ

During the sliding motion, _r ¼ 0 is produced, and thus _e is calculated as
_e ¼ � k2
k1

jejasignðeÞ: ð12Þ
Then, _Ve becomes
_Ve ¼ � k2
k1
jejasignðeÞe ¼ � k2

k1
jejðaþ1Þ

6 � k2
k1
ðe2Þaþ1

2 ¼ � 2
aþ1
2 k2
k1

ðe22 Þ
aþ1
2 ¼ � 2

aþ1
2 k2
k1

ðVeÞ
aþ1
2 6 0:

ð13Þ
Therefore, we can obtain that
_Ve þ qVg
e 6 0 ð14Þ
with q ¼ 2
aþ1
2 k2
k1

;g ¼ aþ1
2 . In order to achieve finite-time convergence, it should be satisfied that q > 0;0 < g < 1 [39]. The

parameters in (9) are chosen to meet the conditions of k1 > 0; k2 > 0, and 1
2 < a < 1, and it will converge in a finite time

Ts, which is expressed as [28]
Ts 6
V1�g

e;0

qð1� gÞ ; ð15Þ
where Ve;0 is the initial value of the Lyapunov candidate function (10).
Because (9) is continuous and differentiable, the derivative of the sliding function with respect to time is given as
_r ¼ k1 _eþ k2jejasignðeÞ: ð16Þ

Then, the time derivative of (16) is represented as
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€r ¼ k1€eþ k2ajeja�1 _e ¼ k1€e� ak22
k1

jej2a�1signðeÞ: ð17Þ
Combining (16) with (17), the second-order auxiliary differential equations based on the integral terminal sliding-mode
function are constructed as
_r1 ¼ r2

_r2 ¼ k1€e� ak22
k1

jej2a�1signðeÞ
r1 ¼ r:

8><
>: ð18Þ
Based on (18), an integral backstepping methodology is employed to deduce the control law. To improve the steady-state
performance of the sliding function, the integral action is augmented in the design process. Define the integration of r1 as
v1 ¼
Z
r1 dt: ð19Þ
In order to ensure the asymptotic stability of r1, the Lyapunov function candidate is chosen as
V1 ¼ 1
2
r2

1 þ
k1
2
v2
1; ð20Þ
where k1 is a positive parameter. Then, we can get the time derivative of V1 as
_V1 ¼ r1 _r1 þ k1v1
_v1 ¼ r1r2 þ k1v1r1: ð21Þ
To make _V1 negative, i.e., _V1 < 0, according to (21), the desired r2 should be given as
/ ¼ �n1r1 � k1v1; ð22Þ

where / ¼ rd

2 is the virtual variable, and n1 is a parameter to be designed. Furthermore, the error between r2 and rd
2 is

defined as
z ¼ r2 � rd
2 ¼ r2 � /: ð23Þ
Then, the above equation is rearranged as
r2 ¼ zþ / ¼ �n1r1 � k1v1 þ z: ð24Þ

Substituting (24) into (21), the time derivative of Lyapunov function V1 becomes
_V1 ¼ r1ð�n1r1 � k1v1 þ zÞ þ k1v1r1 ¼ �n1r2
1 þ r1z: ð25Þ
Next, define the integral error z as
v2 ¼
Z

zdt: ð26Þ
To make the error z as well as the integration of error converge to zero, the following Lyapunov function is proposed as
V2 ¼ V1 þ 1
2
z2 þ k2

2
v2
2; ð27Þ
where k2 is a positive constant. The time derivative of V2 is deduced as
_V2 ¼ _V1 þ z _zþ k2v2
_v2: ð28Þ
Taking (25) and (26) into (28), we can have
_V2 ¼ �n1r2
1 þ r1zþ k2v2zþ z _z: ð29Þ
Theorem 1. For the PUM system given by (7), the sliding function r, virtual variable error z as well as the motion tracking error e
will converge to zero if the following integral backstepping control law with the integral terminal sliding function (9) is satisfied,
u ¼ 1
T ½bn _xþ knx�!signðzÞ� þ mn

Tk1

½k1€xd þ ak22
k1

jej2a�1signðeÞ þ _/� k2v2 � n2z� r1�:

8<
: ð30Þ
where n2 is a positive constant, and ! is the switching gain that satisfies the follow condition,
! > Hf t : ð31Þ

Proof of Theorem 1. From (29) and in combination with (23), it is obtained that
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_V2 ¼ �n1r2
1 þ r1zþ k2v2zþ zð _r2 � _/Þ: ð32Þ
Substitute (18) into the above equation,
_V2 ¼ �n1r2
1 þ r1zþ k2v2zþ z½k1€e� ak22

k1
jej2a�1signðeÞ � _/�: ð33Þ
From (7), the dynamics of PUM can be transformed into
€x ¼ 1
mn

ð�bn _x� knxþ Tu� f tÞ ð34Þ
and taking €e ¼ €x� €xd into (33), it becomes
_V2 ¼ �n1r2
1 þ r1zþ k2v2zþ z

k1
mn

ð�bn _x� knxþ Tu� f tÞ � k1€xd � ak22
k1

jej2a�1signðeÞ � _/

" #
: ð35Þ
Substitute the control law (30) into (35), leading to
_V2 ¼ �n1r2
1 � n2z

2 � k1
mn

ð!jzj þ f tzÞ: ð36Þ
If (31) is satisfied, the final _V2 meets the following inequality,
_V2 < �n1r2
1 � n2z

2 6 0; ð37Þ

which shows that _V2 is negative definite, implying that r1 and z will decay to zero with the proposed control law. Therefore,
based on r! 0; _r! 0, the position error will also converge in a finite time after the system reaches the sliding mode[40,41].
This completes the proof. j

3.2. Adaptive control law design

According to the control input given in (30) and (31), the parameter ! should be determined in advance based on the
upper bound of the total disturbance Hf t . In practice, the disturbances, including friction, hysteresis, and heat disturbance
are time-varying and complex so that the upper bound is difficult to be obtained. Therefore, to retain the robust stability,
! is always given a relatively larger value. However, this conservative method may result in chattering vibration on the con-
trol force and deteriorating the tracking performance subsequently. In this paper, an adaptive methodology is utilized to alle-
viate the problem. To estimate the upper bound of disturbance, the estimated error is defined as
~! ¼ !̂�!: ð38Þ
Theorem 2. For the PUM system given by (7), the sliding function r, virtual variable error z as well as the motion tracking error e
will converge to zero if the control law of ITSMAIBC is selected as
u: ¼ 1
T ½bn _xþ knx� !̂signðzÞ� þ mn

Tk1

½k1€xd þ ak22
k1

jej2a�1signðeÞ þ _/� k2v2 � n2z� r1�;
ð39Þ
with the adaptive law
_̂! ¼ ck1
mn

jzj; ð40Þ
where c is the adaptive gain.
Proof of Theorem 2. Consider the following Lyapunov function
V3 ¼ V2 þ 1
2c

~!2; ð41Þ
and its time derivation is given as
_V3 ¼ _V2 þ c�1 ~! _~!: ð42Þ

In combination with (35) and (38), we can deduce that
_V3 ¼ �n1r2
1 þ r1zþ k2v2zþ z½ k1mn

ð�bn _x� knxþ Tu� f tÞ
�k1€xd � ak22

k1
jej2a�1signðeÞ � _/� þ c�1ð!̂�!Þ _̂!:

ð43Þ



Fig. 2. Block diagram of the proposed ITSMAIBC scheme.
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Substituting the control law of ITSMAIBC, i,e,(39) and (40), into _V3, yields
_V3 ¼ �n1r2
1 � n2z2 � k1

mn
ð!̂jzj þ f tzÞ þ c�1ð!̂�!Þ ck1mn

jzj
¼ �n1r2

1 � n2z2 � k1
mn

ð!jzj þ f tzÞ
< �n1r2

1 � n2z2;

ð44Þ
which shows that _V3 is negative definite. The sliding functionr; zpresented asymptotic stability according to (44). Denote Tr as
the time for any initial state r – 0; _r– 0 converge to zero. After that the tracking error will converge to zero as a consequence
according to (9). Therefore, the total time for the state in the sliding function to zero iswithin Tf ¼ Tr þ Ts [40,41] based on (15).

Therefore, through the backstepping methodology, the globally asymptotic stability is guaranteed even in the presence of
unknown disturbance, such as friction, hysteresis, and so on. This completes the proof. j.

3.3. Overall control law

To avoid the drift problem when estimating the upper bound !̂ with the update law (40), a dead-zone technique [42] is
employed as shown below
_̂! ¼
0; if jzj 6 j
ck1
mn

jzj; if jzj > j;

(
ð45Þ
where j is the dead zone boundary. Hence, the overall control law is given by
u ¼ 1
T ½bn _xþ knx� !̂signðzÞ� þ mn

Tk1

½k1€xd þ ak22
k1

jej2a�1signðeÞ þ _/� k2v2 � n2z� r1�;
ð46Þ
with the modified adaptive law (45). The block diagram of the proposed ITSMAIBC scheme is given in Fig. 2.

Remark 2. In this paper, the hysteresis and friction are treated as disturbances together with other external adverse factors
to avoid complex hysteresis identification in [18,43], friction estimation in [20]. Furthermore, for the high robustness to the
external disturbance, no state observer or DOB methodology, such as ESO [21] and nonlinear observer [24] is incorporated
into the proposed control scheme, which simplifies the implementation.
Remark 3. Compared with the conventional terminal sliding mode control [33,44], the integral action in (9) is very impor-
tant to improve the transient and steady-state response [34]. Furthermore, the integral action in the backstepping control
also make the integral errors of r1 and r2 converge to zero so that the robustness to external disturbance and tracking per-
formance are further improved.
Remark 4. Different from the method proposed in [25,27], where the backstepping control law is deduced based on the
tracking error directly, the proposed ITSMAIBC employs an integral terminal sliding manifold to realize finite-time conver-
gence and well tracking performance. Furthermore, the integral backstepping control law is obtained by the sliding function-
based differential equations and avoids the singular value in [31].
4. Experimental setup

4.1. Experimental system

The tracking performance is tested on the PUM (PI-M663, Physik Instrumente) for a surgical device developed in [35]. The
experimental platform and the overall control system are illustrated in Fig. 3. The implementation of ITSMAIBC is based on



Fig. 3. The experimental setup of PUM. (a) experimental platform. (b) overall block diagram of control system.
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the dSPACE control card (DS1104) through compiling the Simulink blocks developed in MATLAB. The input voltage between
�10 to +10 V passed through a 16-bit digital-to-analogue converter (DAC) is amplified by the motor driver (C-867, Physik
Instrumente) to drive the piezoelectric actuator. The measured position is sent to the control system through a linear enco-
der interface. The sample rate of the overall system is set as 1000 Hz. The nominal and linear part of PUM are identified
through the input-output data excited by a multi- frequencies square wave to avoid the effect of nonlinearity. By virtual
of MATLAB system identification toolbox, the nominal plant is described as
€xþ 248:4 _xþ 202x ¼ 4940u: ð47Þ

The comparison of the measured position and identified result is plotted in Fig. 4. The model of (47) can capture the

dynamics over 90%. It should be noted that the toolset for the surgery mount on the PUM is considered as a load uncertainty
in this paper. Therefore, the model uncertainties of the system is actually more than 10% in practice. Moreover, the friction
phenomenon is also obvious when sinusoidal waves with different amplitudes are injected into the open-loop system, as
shown in Fig. 5. To overcome the static friction, the PUM can be actuated only when the input voltage is high enough,
and the voltages are varied with the input amplitudes. Furthermore, the friction also present asymmetry with different
motion direction as shown in Fig. 5. These factors bring serious challenges to control the PUM accurately, the controller
should be robust enough to handle the problem.
Fig. 4. Model validation of PUM. (a) input voltage. (b) comparison of the actual and identified output position.



Fig. 5. An illustration of the friction phenomenon in PUM for sinusoidal saves with different amplitudes.
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4.2. Parameters of controllers

To highlight the performance of the proposed ITSMAIBC, another three controllers are also developed in this paper. To
accommodate the disturbances of PUM, these controllers are added with an ESO to further improve the precision under

unknown adverse impacts [45] and the estimated disturbance is denoted as d̂ with the observer bandwidth at 150 Hz.

(1) PID with ESO (PID + ESO): To get optimal parameters, the control gains are calculated by a linear-quadratic regulator
(LQR) [35], the control input is given as
u1 ¼ �Kpe� Ki

Z
edt � Kp _e� d̂: ð48Þ

(2) Adaptive integral backstepping control (AIBC) with ESO (AIBC + ESO): The AIBC based on position error e is also given as
a benchmark in this paper [27] and the observer is replaced by ESO for a fair comparison with the following control law,

u2 ¼ 1
T
½bn _xþ knxþmnð _/� k2z� k2v2 � eÞ þ F̂� � d̂; ð49Þ

with
/ ¼ �k1eþ _xd � k1v1; z ¼ _x� /; _̂F ¼ 1
mn
cz;

v1 ¼ R
edt;v2 ¼ R

zdt:
ð50Þ

(3)PID-based SMC (PIDSMC) with ESO (PIDSMC + ESO): In [23], a PIDSMC proposed to alleviate chattering phenomenon is
given in this paper as

u3 ¼ 1
T ð€xd þ bn _xd þ knxd �mc _eþ bn _eþ kneÞ�
ðPcqc þ Ic

R
qc dt þ Dc _qcÞ � d̂;

ð51Þ

with the sliding function qc ¼ mceþ _e.
The parameters of all the controllers are listed in Table 1. It should be noted that the parameters of the controllers are deter-
mined first in a preliminary initialization by the simulation results, and subsequently are tuned elaborately and carefully by
an iterative trial and error method to get the proper anticipated performance (for each specified controller) on the actual
experimental platform. This ensures that the comparison of outcomes achieved are suitably fair, as each specified controller
has essentially been appropriately and properly tuned.
Table 1
Parameters of controllers.

Controller Notation Value

PID + ESO Kp ;Ki;Kd 40.5, 160, 0.1
AIBC + ESO k1; k2; k1; k2; c 1000, 300, 1000, 1000, 0.1
PIDSMC + ESO mc ; Pc ; Ic ;Dc 80, 0.15, 120, 0.01
ITSMAIBC k1; k2;a; k1; k2 10, 2000, 0.8, 600, 500

n1; n2; c;j 600, 500, 0.1, 0.1



Fig. 6. Simulation results of the finite-time convergence performance.

Fig. 7. Tracking results with and without adaptive law for 5 Hz sinusoidal wave.

10 Z. Feng et al. /Mechanical Systems and Signal Processing 144 (2020) 106856
4.3. Performance analysis

Based on the given parameters in Table 1 and nominal plant (47), the finite-time convergence performance of the proposed
method is tested by a set of simulations considering a clear expression. To obtain the convergence time, three 1 Hz sinusoidal
waves with different initial errors, i.e. e0 = 0.05 mm, 0.1 mm and 0.2 mm, are input as the references respectively. The time
derivative of r and tracking errors are demonstrated in Fig. 6. It is clear that the convergence time of _r increase with e0, and
the approximate time with _r ¼ 0 is 0.038s for all the three conditions, i.e. Tr ¼ 0:038 according to Theorem 2. Furthermore,
once during the sliding motion, the error ewill converge in a finite time Ts, which are calculated as 0.0137s, 0.0158s, 0.0181s
with the Eq. (15), respectively. Therefore, the total convergence time Tf are approximate as 0.0517s, 0.0508s, and 0.0538s,
respectively. From Fig. 6, it is evident that convergence time of tracking error is about 0.043s for all the three conditions,
and is also within the calculated Tf , which demonstrates the finite-time convergence performance of the proposed method.

The effectiveness of the adaptive law is checked by the 5 Hz sinusoidal wave with 2 mm amplitude as the reference input,
and the experimental results are plotted in Fig. 7. It is evident that the performance with adaptive law is better, and at the
position suffering from significant friction, the fixed switch gain 20 generates the chattering on the control force and sliding
function r. Moreover, the r with adaptive law is smaller than that without adaptive law so that the chattering is further
alleviated. The above results demonstrate the adaptive law can reduce the chattering phenomenon and improve the tracking
performance effectively.
5. Results and discussions

5.1. Tracking results of continuous sinusoidal waves

The tracking performance for continuous sinusoidal waves is tested firstly with different controllers. It should be noted
that the experiments are performed with the toolset on the PUM to accord with the working condition. The references (Ref)
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are set as 1 Hz, 5 Hz, and 10 Hz with the tracking amplitude of 2 mm. The tracking results are demonstrated in Figs. 8–10,
respectively, and all the statistical results of the motion tracking errors for sinusoidal waves are listed in Table 2. For low-
frequency tracking at 1 Hz in Fig. 8, it is clear that the friction is obvious from the zoomed-in view of the plot. Although the
ESO is added for the benchmark controllers, the proposed ITSMAIBC achieves the best performance with the root-mean-
square error (erms) of 0.0012 mm and maximal error (emax) of 0.0055 mm, without any extra state or disturbance observer.
For a high-frequency tracking, PID + ESO gets the worst results for the limited bandwidth of PID leading to a large deviation
from the reference, although the parameters have been optimized by LQR. For the AIBC + ESO and PIDSMC + ESO, the former
one gets slightly improvement than the latter one, although the two methods are totally different. In comparison with
Fig. 8. Experimental position tracking results of different controllers at 1 Hz sinusoidal wave.

Fig. 9. Position tracking results of different controllers at 5 Hz sinusoidal wave.



Fig. 10. Position tracking results of different controllers at 10 Hz sinusoidal wave.

Table 2
Statistical Results of Tracking Errors of sinusoidal waves.

Statistical Errors (mm) 1 Hz 5 Hz 10 Hz

PID + ESO erms 0.0051 0.0266 0.0591
emax 0.0236 0.0571 0.1248

AIBC + ESO erms 0.0037 0.0100 0.0233
emax 0.0201 0.0241 0.0479

PIDSMC + ESO erms 0.0041 0.0165 0.0267
emax 0.0138 0.0511 0.0596

ITSMAIBC erms 0.0012 0.0033 0.0127
emax 0.0055 0.0095 0.0266
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AIBC + ESO at 5 Hz, the proposed ITSMAIBC achieves the erms with 0.0033 mm and emax with 0.0095 mm, improving by 67 %
and 60.58%, respectively. The control force for 1 Hz and 5 Hz are similar for the four controllers except for the peak position
of the references, where the friction is obvious for the change of motion direction. It is clear that the control force with ITS-
MAIBC presents less chattering, and consumes less energy but with the best performance.

For the 10 Hz tracking, the heat disturbance is significant for the fast motion between the slider and stator. It also can be
observed that the control force of PID + ESO is nearly unstable so that the controller cannot track the high-frequency signal.
Under this condition, the proposed controller still gets the best performance among the four controllers with the erms at
0.0127 mm and emax at 0.0266 mm, which are 0.63% and 1.33% of the reference stroke. The key difference between
AIBC + ESO and ITSMAIBC lies in that AIBC + ESO is designed based on position errors directly, whereas the proposed method
utilizes the integral terminal sliding function so that the precision is improved significantly.
Fig. 11. Comparative results with the previous work in [24].
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Fig. 11 shows the comparative results with our previous work in [24], where the nonlinear observer, SMC, and robust
adaptive control are mixed together to improve the tracking performance for the same PUM system. It is clear that a more
than 50% improvement is achieved by implementing the sole ITSMAIBC without any observer. The above results verify that
the proposed method can precisely track the continuous sinusoidal waves with different frequencies.

The performance of the different controllers for 5 Hz sinusoidal waves with different amplitudes are given in Fig. 12,
where only the erms are calculated considering a clear expression. With the increase of amplitude, the performance of
PID + ESO and PIDSMC are deteriorated most significantly, especially for the amplitude at 4 mm. The erms of the proposed
method varies from 0.0027 mm to 0.0041 mm, which shows the adaptability and precision tracking for different amplitudes
of sinusoidal waves.
Fig. 12. Comparative results of erms for 5 Hz sinusoidal waves with different amplitudes.

Fig. 13. Position tracking results of different controllers at 1 Hz triangular wave.
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5.2. Tracking results of discontinuous triangular waves

To check the tracking performance for discontinuous signals, the triangular waves are employed in this paper. Except for
the inherent disturbance, such as friction, hysteresis, another difficulty to track triangular wave is the high-frequency har-
monics of the fundamental frequency, which requires the controller to provide sufficient tracking bandwidth in order to
obtain anticipated performance. In this subsection, three types of triangular waves with fundamental frequencies of 1 Hz,
5 Hz, and 10 Hz are applied on different controllers, and the amplitudes are set to the same as 2 mm. The tracking perfor-
mance, as well as the tracking errors, is shown in Fig. 13–15, respectively. Moreover, Table 3 gives the statistical results for
different controllers under various frequencies.

For the 1 Hz tracking results, the erms are close to the results of the sinusoidal wave. However, the emax increase a lot for the
discontinuous waves. Despite that, the emax of ITSMAIBC is 0.0103 mm, only 0.52% of the tracking stroke. For the performance
of 5 Hz and 10 Hz, the results of PID + ESO are with the largest errors for the lowest bandwidth and thus PID + ESO cannot
deal with the tracking of discontinuous signals well. At 5 Hz, the erms are 0.0273 mm, 0.0285 mm, 0.0072 mm for the other
three controllers, and the emax are 0.0919 mm, 0.0993 mm, 0.0370 mm, respectively. Obviously, the performance is improved
more than 2.5 times through the proposed ITSMAIBC. For a higher frequency at 10 Hz, the best performance is obtained by
the proposed method with the erms at 0.0495 mm and emax at 0.1406 mm. Despite the fact that the performance with ITS-
MAIBC is degraded significantly in comparison with the results of 10 Hz sinusoidal wave, the conclusion that ITSMAIBC with
the largest tracking bandwidth is still verified through this experiment under the same condition. Furthermore, from the
control input of the different controllers, an essential pertinent key observation can also be obtained that the proposed
method presents less chattering and consumes less energy; and yet still achieves suitably fast and precision tracking of tri-
angular waves. According to the above discussions, it is shown that the proposed controllers can achieve accurate motion
tracking of discontinuous triangular waves effectively.

The performance of the different controllers for 5 Hz triangular waves with different amplitudes are given in Fig. 16. It
should be noted for the high-frequency harmonics of triangular waves so that the control force is larger than the same fre-
quency’s sinusoidal waves. Therefore, the maximum amplitude 2.5 mm is chosen for triangular waves considering the limits
Fig. 14. Position tracking results of different controllers at 5 Hz triangular wave.



Fig. 15. Position tracking results of different controllers at 10 Hz triangular wave.

Table 3
Statistical Results of Tracking Errors of triangular waves.

Statistical Errors (mm) 1 Hz 5 Hz 10 Hz

PID + ESO erms 0.0065 0.0345 0.1849
emax 0.0423 0.1142 0.3851

AIBC + ESO erms 0.0070 0.0273 0.1382
emax 0.0378 0.0919 0.2891

PIDSMC + ESO erms 0.0047 0.0285 0.1158
emax 0.0305 0.0993 0.2778

ITSMAIBC erms 0.0011 0.0072 0.0495
emax 0.0103 0.0370 0.1406

Fig. 16. Comparative results of erms for 5 Hz triangular waves with different amplitudes.
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Fig. 17. Experimental results of the surgical operation on mock membrane with the proposed method. (a) Experimental setup. (b) Tracking results of the
overall surgical operation. (c) Tracking error.
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of input voltage of the system. Note that for the tracking results at 2.5 mm, the performance of AIBC + ESO is the worst
because the calculated control input exceeds the limits of PUM so that the error increases significantly. In comparison,
the erms of the proposed method varies from 0.0055 mm to 0.0109 mm, which shows the adaptability and precision tracking
for different amplitudes of triangular waves.

5.3. Surgical operation on mock membrane

The effectiveness of the proposed controller is also validated on the developed PUM-based surgical device, Ventilation
Tube Applicator (VTA), for the treatment of Otitis Media with Effusion (OME) [35]. The whole experimental setup is shown
in Fig. 17(a), where the force sensor (FS1500NS, Honeywell) is installed to measure the contact force and guide the sequential
actions, and the cutter retraction mechanism is used to cut the mock membrane. To imitate the property of human tympanic
membrane, the soft Polyethylene (PE) film is used as the mock membrane [7]. The goal of the surgical operation is to insert a
grommet on mock membrane to relieve the pressure from the middle ear. The overall procedures start from the motion of
PUMwith the cutter retraction mechanism until the contact force with the mock membrane up to 0.03 N. Then, the myringo-
tomy (about 0.35 s) is conducted and the cutter is driven by the cutter retraction mechanism to make an incision on the
mock membrane. Finally, the tube insertion (about 0.138 s) is processed, i.e. the cutter is retracted and the grommet is
pushed into the mock membrane by the device. The generated motion sequences and the tracking results of the proposed
controller are plotted in Fig. 17(b). It is clear the proposed ITSMAIBC tracks the trajectory precisely enough to complete
the surgical operation successfully without over-insertion or under-insertion as is shown in Fig. 17(a). It should be also noted
that during the myringotomy and tube insertion, the PUM suffers from the time-varying disturbances generated from the
force in contact with mock membrane. The tracking error is also given in Fig. 17(c), where the emax and erms are
0.1273 mm and 0.0290 mm, respectively. The above results demonstrate that the tracking performance of the proposed
method can complete the surgical operation successfully and precisely in a short time.
6. Conclusions

In this paper, the ITSMAIBC is developed for a PUM to achieve precision motion tracking at the presence of inherent fric-
tion, hysteresis nonlinearity, heat disturbance, and model uncertainties. The finite-time convergence and accurate tracking
performance of the desired reference are guaranteed by an integral-type terminal sliding manifold. Through constructing the
second-order differential equations based on the sliding function for controller design, a high-order SMC-like property with
less chattering is achieved. Furthermore, the robustness to the unknown disturbance is obtained by the integral backstep-
ping methodology and an adaptive law is designed in order to estimate the upper bound of total disturbance. The overall
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ITSMAIBC is deduced by the Lyapunov theory with stability analysis. Comparative experiments are conducted on a PUM sys-
tem to verify the performance of the proposed controller. For continuous sinusoidal waves up to 10 Hz, the erms and emax are
within 0.013 mm and 0.027 mm, i,e, 0.65% and 1.35% of the amplitude at 2 mm. For discontinuous triangular waves, the ITS-
MAIBC also achieves the best performance in comparison with the other three benchmark controllers under different fre-
quencies and amplitudes. The experimental results verify that the proposed control scheme is simple for practical
implementation without any observer, and it can address the adverse impacts effectively as well as realize precision motion
for various references. The successful implementation for the surgical operation on mock membrane also indicates the prac-
tical value on the application for surgical device.
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