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A B S T R A C T

The development of nanotechnology requires a precision tracking of periodic signals in order
to complete repetitive industrial or scientific tasks. Although repetitive control is an intuitive
choice to realize precisely periodic signal’s tracking, an integer number should match the
period of signals for a digital control system otherwise the performance would be deteriorated
significantly. Thus, in this paper, a fractional delay filter based repetitive control (FDFRC) is
developed to achieve precision signal tracking with arbitrary periods. According to the internal
model principle, a fractional delay filter with the spectrum-selection property is designed by
using of a Farrow structure to address integer/non-integer delays. The stability of FDFRC
is also given and analyzed in frequency domain to facilitate controller implementation. The
proposed FDFRC allows an easy, simple and practical realization with only one parameter to
be adjusted for different integer/non-integer delays. Comparative experiments with different
frequencies of triangular waves for 𝑥 axis and Lissajous scanning for 𝑥–𝑦 plane on a piezoelectric
nanopositioning stage are conducted to further verify the significant improvements on the
tracking performance of the proposed controller.

. Introduction

The rapid development of nanotechnology requires a precision trajectory tracking of the devices for various tasks [1]. For
he applications in micro/nano scale, the piezoelectric nanopositioning stage is a widely used device to obtain nanometer or
ubnanometer precision [2]. Through integrating with flexure-based compliant mechanisms, a transmit motion is generated without
riction and backlash [3]. The piezoelectric nanopositioning stages have been widely employed in micromanipulation systems [4],
ast tool servo systems [5], and scanning probe microscopes [6]. More specifically, the image quality of the sample for scanning probe
icroscopes are largely determined by the tracking precision of the piezoelectric nanopositioning stages. However, the indigenous
ysteresis of piezoelectric actuators and resonance caused by the light damping property deteriorate the tracking performance
ignificantly.
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Nomenclature

𝛼, 𝛽 Parameters of zero-phase filter
𝐶(𝑧−1) Baseline feedback controller
𝑑 Compensation delay term in RC
𝑓𝑟 Frequency of 𝑟(𝑘)
𝑓𝑠 Sampling rate
𝐾 Order of the fractional delay filter
𝑘 Sampling point
𝐿(𝑧−1) Learning filter
𝑁 Number of samples in one period of a periodic signal
𝑁∗ Integer part of 𝑁
𝑝 Non-integer part of 𝑁
𝑃 (𝑧−1) Discrete linear system
𝑟(𝑘) Periodic reference
𝑢(𝑘) Control input
𝑦(𝑘) Plant output
𝑧−1 Unit delay operator
FBC Baseline feedback controller
FDFRC Fractional delay filter based repetitive control
FORC Fractional-order repetitive controller
RC Repetitive control
TRC Traditional repetitive controller

The hysteresis nonlinearities of piezoelectric nanopositioning stages can be removed through modeling and feedforward
ompensation by using different hysteresis models (see [7,8]). However, the methods need a time-consuming modeling process to
escribe an accurate hysteresis model. Alternatively, robust control schemes such as sliding mode control are effective to eliminate
ysteresis and improve tracking precision without complex modeling [9]. Furthermore, in order to reduce the motion vibrations,
ome damping controllers also have been designed to increase the damping coefficient of the piezo-actuated stages [10]. It is worth
oting that the previous mentioned control schemes are generally designed based on a second-order plant.

As a consequence, repetitive control (RC) is suitable to track such motion process with large performance improvement.
ccording to the internal model principle [11], the infinite gains at the fundamental frequency as well as the harmonics of the
eference or disturbance are generated so that a zero steady-state error is achieved [12]. As a learning-based controller in time
omain, RC can be implemented without resetting to the initial states in comparison with iterative learning control that works in
teration domain [13,14]. Various RC methods have been proposed, such as RC with different stability criteria [15,16], and predictive
C [17]. In [18,19], the robust RCs through integrating with equivalent input disturbance observer were proposed and designed in
ontinuous-time domain. In view of the application of nanopositioning stages, the discrete-time RCs incorporating Prandtl–Ishlinskii
ompensation model were developed and analyzed to address the hysteresis nonlinearity [20,21]. Note that the above methods
equire the accurate hysteresis compensation. Based on the experimental results, the hysteresis nonlinearity caused errors are always
t the harmonics of the input periodic reference so that the odd-harmonic RC was utilized to circumvent hysteresis modeling [22].

In general, the discrete-time repetitive control is realized by inserting the term 1∕(1 − 𝑧−𝑁 ), where 𝑁 is the number of sample
oints per period of the signal of a digital control system. For the previous mentioned RC design, it is always satisfied that 𝑁 is
n integer. Nevertheless, this condition is rigorous for some applications thus the tracking frequency cannot be chosen arbitrarily,
specially for a low sampling rate. For example, the ratio of 𝑥 and 𝑦 frequencies for Lissajous scanning should be assigned as a
ational number [23]. If the nearest integer of 𝑁 is used in RC, the tracking performance is deteriorated significantly. To address
his problem, multirate RC is proposed so that RC is implemented with a variable sampling rate to make 𝑁 an integer [24,25].
owever, the implementation of varied control structure is complex and may result in destabilization.

For systems with fixed sampling rate, the mentioned issue will lead to the fractional order controller. In [26], a set of tuning rules
or integer-order PID and fractional-order PID controllers were developed. Also in [27], a novel auto-tuning method to ensure the
obustness for fractional order PI/PD controllers was proposed. A low-order, computationally stable and efficient method for direct
pproximation of general fractional order controllers in the form of discrete-time rational transfer functions was developed in [28],
nd the development of fractional-order hysteresis model was built in [29]. More details about fractional order control focusing on
eedback control and stability can be found in [30,31]. In concern with the RC with fractional delay on practical applications, the
agrange interpolating to approximate the fractional delay is a widely used method for a fixed sampling rate system. For example,
he fractional repetitive control with a fractional lead filter was designed for pulse width modulation inverter based on Lagrange
2

nterpolation [32].
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Fig. 1. Block diagram of RC scheme with a series–parallel implementation based on the spectrum-selection filter.

In order to compensate hysteresis and improve tracking accuracy, a plugged-in fractional repetitive control for nanopositioning
tages was proposed in [33]. However, it should be noted that the non-integer delay coefficients approximated by the Lagrange
nterpolation are changed with the non-integer delay parameter so that the fractional filter should be redesigned for signals with
ifferent frequencies. Furthermore, to enhance the flexibility when implementing RC, a spectrum-selection filter was integrated in
C to balance the convergence speed and robustness to external disturbances [34,35]. However, the delay number 𝑁 should be an

integer when implementing the above controllers.
Motivated by aforementioned essential issues, the fractional delay filter based repetitive control (FDFRC) for precision tracking

is proposed to provide a comprehensive solution to the non-integer delay in the fixed sampling rate system and a significant
performance improvement for the piezoelectric nanopositioning stage. The main contributions of this paper are listed below.

• A spectrum-selection based fractional delay filter is proposed, analyzed and implemented in Farrow structure to address the
integer/non-integer delays so that the infinite gains at the harmonics of the periodic signal are obtained.

• The stability of FDFRC is analyzed and given in frequency domain based on the approximated filter for practical implementa-
tion.

• Various experiments on a piezoelectric nanopositioning stage are conducted to test the controller’s performance under periodic
signals input of different frequencies through comparisons.

The method in this paper to construct the fractional delay is realized by a Farrow structure so that the fractional delay filter
can be deployed without redesigning the relevant coefficients for different integer/non-integer delays. Thus, the proposed FDFRC is
easy to implement for systems subjecting to various periodic references with different frequencies in comparison with the methods
in [20,21,33].

This paper begins with an overview of RC and the problem of fractional delay in Section 2. The detailed design and analysis of
FDFRC as well as its stability in frequency domain are given in Section 3. The experimental setup and performance analysis of a
piezoelectric nanopositioning stage are shown in Section 4. Experimental results of different reference signals are elaborated and
discussed in Section 5, and Section 6 gives the conclusion.

2. Preliminaries and problem formulation

RC is an effective method to track periodic references or compensate periodic disturbances. For the general RC [21] or odd-
harmonic RC [22], the main drawback is that the errors or disturbances can be amplified if the frequency spectrum is located at
the non-harmonics of the fundamental frequency due to the waterbed effect. In [34], the RC scheme using spectrum-selection filter
was proposed to make a trade-off between the convergence speed and robustness.

The block diagram of RC scheme based on the spectrum-selection filter for the piezoelectric nanopositioning stage is given in
Fig. 1. To avoid the complex hysteresis modeling, the plant is described as a discrete linear system 𝑃 (𝑧−1) cascaded with a bounded
isturbance 𝑑(𝑘). The tracking error is calculated by 𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘), and 𝑄(𝑧−1) is the spectrum-selection filter to generate high
ains on the fundamental frequency and its harmonics. Therefore, according to Fig. 1, the overall controller integrating with RC
nd 𝐶𝑓 (𝑧−1) is expressed as

𝐶(𝑧−1) =
𝐶𝑓 (𝑧−1) +𝑄(𝑧−1)𝐿(𝑧−1)

1 − 𝑧−𝑑𝑄(𝑧−1)
. (1)

Based on (1), the sensitivity transfer function from 𝑟(𝑘) to 𝑒(𝑘) is derived as

𝑆𝑅𝐶 (𝑧−1) =
1 − 𝑧−𝑑𝑄(𝑧−1)

1 + 𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) +𝑄(𝑧−1)(𝐿(𝑧−1)𝑃 (𝑧−1) − 𝑧−𝑑 )
. (2)

To generate notches at the fundamental frequency and its harmonics, and to eliminate the distortion in the passband, a spectrum-
selection filter is designed as [34,35]

𝑄𝑐 (𝑧−1) =
(1 − 𝜌)𝑧−(𝑁−𝑑)

, 𝜌 ∈ [0, 1). (3)
3

1 − 𝜌𝑧−𝑁
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Fig. 2. Sensitivity of |𝑆𝑛(𝑧−1)| for different 𝑝 and 𝑓𝑠 with ℎ = 1, 𝜌 = 0.4.

ubstituting (3) into the numerator of (2), we can obtain that

𝑆𝑛(𝑧−1) = 1 − 𝑧−𝑑𝑄𝑐 (𝑧−1) =
1 − 𝑧−𝑁

1 − 𝜌𝑧−𝑁
. (4)

Therefore, |𝑆𝑅𝐶 (𝑧)−1| will be equal to zero if 𝑁 is the exact number of sample points per period of the reference, which is an integer
n general. It should be noted that with the increase of 𝜌, the convergence speed is decreased while the robustness to non-periodic
rrors is improved, and vice versa. Furthermore, in order to reduce the noise and model uncertainties, a low-pass filter is given as

𝑄𝑟(𝑧−1) = 𝛼𝑧−1 + 𝛽 + 𝛼𝑧, (5)

here the parameters should satisfy that 2𝛼 + 𝛽 = 1, and the property of zero phase retains with the non-causal term 𝛼𝑧. Although
𝑟(𝑧−1) is a non-causal filter, its causal application can be ensured by the delay term 𝑧−(𝑁−𝑑) in 𝑄𝑐 (𝑧−1) so that it can be implemented

n practical systems. Therefore, the spectrum-selection filter is designed as

𝑄(𝑧−1) = 𝑄𝑐 (𝑧−1)𝑄𝑟(𝑧−1) =
(1 − 𝜌)(𝛼𝑧−1 + 𝛽 + 𝛼𝑧)𝑧−(𝑁−𝑑)

1 − 𝜌𝑧−𝑁
. (6)

It should be noted that 𝑁 in general is chosen as an integer, and calculated by 𝑓𝑠∕𝑓𝑟. However, the control scheme cannot track
signals with arbitrary periods for a fixed 𝑓𝑠 when 𝑁 is a non-integer number. In this situation, assuming that 𝑁 = 𝑁∗ + 𝑝, where
𝑁∗ = 𝑖𝑛𝑡[𝑁] is the integer part and 0 < 𝑝 < 1 is the fractional part. Moreover, |𝑆𝑛(𝑧−1)| can be expressed as

|𝑆𝑛(𝑧−1)| =
|1 − 𝑒−𝑗𝜔𝑁∕𝑓𝑠

|

|1 − 𝜌𝑒−𝑗𝜔𝑁∕𝑓𝑠
|

=

√

1 − cos(2𝜋ℎ𝑓𝑟𝑁∕𝑓𝑠)
1 − 𝜌 cos(2𝜋ℎ𝑓𝑟𝑁∕𝑓𝑠)

=

√

1 − cos(2𝜋ℎ𝑓𝑟(𝑁∗ + 𝑝)∕𝑓𝑠)
1 − 𝜌 cos(2𝜋ℎ𝑓𝑟(𝑁∗ + 𝑝)∕𝑓𝑠)

,

(7)

where 𝜔 = 2𝜋ℎ𝑓𝑟 with ℎ being the harmonic order.
To demonstrate the influence of fractional delay 𝑝 and sampling rate 𝑓𝑠 on the tracking performance, the amplitudes of 𝑆𝑛(𝑧−1)

are plotted in Fig. 2. With 𝑝 varying from 0 to 0.9, the gains of 𝑆𝑛(𝑧−1) are increased so that the tracking performance is significantly
egraded according to (2). Furthermore, for a fixed 𝑝, the error can be alleviated by increasing 𝑓𝑠 at the cost of computing burden.
herefore, the fractional delay poses a great challenge for RC to track references with non-integer delays in a digital control system.

. Fractional delay filter based repetitive control

.1. Design of fractional delay filter 𝑄(𝑧−1)

In this section, a fractional delay filter with spectrum-selection property is designed, and the fractional delay is constructed by a
arrow structure so that the fractional delay filter can be realized without redesigned the fractional delay coefficients for different
nteger/non-integer delays. The non-integer delay 𝑁 can be decomposed as

𝑧−𝑁 = 𝑧−(𝑁
∗+𝑝) = 𝑧−𝑁

∗
⋅ 𝑧−𝑝, (8)
4



Mechanical Systems and Signal Processing 164 (2022) 108249Z. Feng et al.
Fig. 3. The implementation of 𝐺𝑓 (𝑧, 𝑝) using the Farrow structure.

where 𝑧−𝑝 is the fractional delay. Based on the Taylor Series expansion to a polynomial in 𝑝, 𝑧−𝑝 can be rewritten as

𝑧−𝑝 =𝑒−𝑗𝜔𝑝 =
∞
∑

𝑘=0

(−𝑗𝜔)𝑘

𝑘!
(𝑝)𝑘

=
𝐾
∑

𝑘=0

(−𝑗𝜔)𝑘

𝑘!
(𝑝)𝑘 + 𝑂(𝑝𝐾+1),

(9)

where 𝑂(𝑝𝐾+1) denotes a higher-order term which is approximated to zero, and 𝐾 is the order of the polynomial. Thus, it is obtained
that

𝑒−𝑗𝜔𝑝 ≈
𝐾
∑

𝑘=0

(−𝑗𝜔)𝑘

𝑘!
𝑝𝑘 =

𝐾
∑

𝑘=0
𝐹𝑘(𝑧−1)𝑝𝑘, (10)

where 𝐹0(𝑧−1), 𝐹1(𝑧−1), 𝐹2(𝑧−1),… , 𝐹𝐾 (𝑧−1) are the sub-filter to be determined, and the implementation can be realized through the
Farrow structure shown in Fig. 3. Furthermore, the above equation is rewritten as

𝐺𝑓 (𝑧−1, 𝑝) =
𝐾
∑

𝑘=0
𝐹𝑘(𝑧−1)𝑝𝑘 = 𝐩𝑇𝐅(𝑧−1), (11)

where

𝐩 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑝
𝑝2

⋮
𝑝𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,𝐅(𝑧−1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹0(𝑧−1)
𝐹1(𝑧−1)
𝐹2(𝑧−1)

⋮
𝐹𝐾 (𝑧−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

Through implementing Lagrange interpolation, we can obtain that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺𝑓 (𝑧−1, 0) =𝐹0(𝑧−1)00 + 𝐹1(𝑧−1)01 + .. + 𝐹𝐾 (𝑧−1)0𝐾 = 𝑧0,

𝐺𝑓 (𝑧−1, 1) =𝐹0(𝑧−1)10 + 𝐹1(𝑧−1)11 + .. + 𝐹𝐾 (𝑧−1)1𝐾 = 𝑧−1,

⋮

𝐺𝑓 (𝑧−1, 𝐾) =𝐹0(𝑧−1)𝑀0 + 𝐹1(𝑧−1)𝑀1 + .. + 𝐹𝐾 (𝑧−1)𝐾𝐾 = 𝑧−𝐾 ,

(13)

which is simplified as

𝐕𝐅(𝑧−1) = 𝐳, (14)

where

𝐕 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

00 01 02 ⋯ 0𝐾

10 11 12 ⋯ 1𝐾

20 21 22 ⋯ 2𝐾

⋮ ⋮ ⋮ ⋱ ⋮
𝐾0 𝐾1 𝐾2 ⋯ 𝐾𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐳 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧0

𝑧−1

𝑧−2

⋮
𝑧−𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

It is clear that 𝐕 is a Vandermonde matrix. Therefore, the sub-filters 𝐅(𝑧−1) can be rewritten as

𝐅(𝑧−1) = 𝐕−1𝐳, (16)

and the fractional delay filter is given by

𝐺𝑓 (𝑧−1, 𝑝) = 𝐩𝑇𝐕−1𝐳. (17)

In order to test the performance of sub-filters for different orders 𝐾, the magnitude responses of 𝐺𝑓 (𝑧−1, 𝑝) are plotted in Fig. 4.
For 𝐾 = 1, the passband determined by ±3 dB is the lowest at about 690 Hz, and for 𝐾 = 3, 5, 7, the bandwidth are at about
5

760 Hz, 605 Hz, and 560 Hz, respectively. Therefore, 𝐾 = 3 is selected in this paper to guarantee the best performance. In addition,



Mechanical Systems and Signal Processing 164 (2022) 108249Z. Feng et al.

F

Fig. 4. The magnitude responses of 𝐺𝑓 (𝑧−1 , 𝑝) for different 𝐾 with 𝑝 = 0.2, 𝑓𝑠 = 2000 Hz.

Fig. 5. The magnitude responses of 𝐺𝑓 (𝑧−1 , 𝑝) for different 𝑝 with 𝐾 = 3, 𝑓𝑠 = 2000 Hz.

Fig. 6. The implementation of 𝑄(𝑧−1) with fractional delay filter.

ig. 5 gives the magnitude responses of 𝐺𝑓 (𝑧−1, 𝑝) to approximate different fractional delays 𝑝. It is obvious the filter is capable of
fractional delay estimation in the low frequency band up to nearly 600 Hz, i.e., more than 60% of the Nyquist bandwidth.

Based on the fractional delay filter with the Farrow structure, the spectrum-selection filter with fractional delay in this paper is
designed as

𝑄𝑓𝑐 (𝑧−1) =
(1 − 𝜌)𝑧−(𝑁∗−𝑑)𝐺𝑓 (𝑧, 𝑝)

1 − 𝜌𝑧−𝑁∗𝐺𝑓 (𝑧, 𝑝)
, 𝜌 ∈ [0, 1), (18)

Then, combining with the zero-phase low-pass filter 𝑄𝑟(𝑧−1), the proposed fractional delay filter is designed as

𝑄(𝑧−1) =
(1 − 𝜌)(𝛼𝑧−1 + 𝛽 + 𝛼𝑧)𝑧−(𝑁∗−𝑑)𝐺𝑓 (𝑧−1, 𝑝)

1 − 𝜌𝑧−𝑁∗𝐺𝑓 (𝑧−1, 𝑝)
. (19)

In order to realize (19) with a varied 𝜌 to make a trade off between the convergence speed and robustness, the scheme of 𝑄(𝑧−1)
with fractional delay filter is proposed in Fig. 6 in this paper.

In addition, the performance of the fractional delay filter with spectrum-selection property is analyzed. With 𝑓𝑠 = 2000 Hz and
𝑓 = 22 Hz, the exact delay is calculated as 𝑁 = 90.909 with a fractional delay 𝑝 = 0.909. For 𝑁 = 90, 91, 90.909, the magnitude
6

𝑟
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Fig. 7. The magnitude responses of 1 −𝑄(𝑧−1) for different 𝑁 with 𝜌 = 0.4, 𝑄𝑟(𝑧−1) = 1, 𝑓𝑠 = 2000 Hz, 𝑓𝑟 = 22 Hz.

esponses of 1−𝑄(𝑧−1) are plotted in Fig. 7. At the fundamental frequency 22 Hz, the parameter with 𝑁 = 90 is notched at 22.2 Hz,
nd that with 𝑁 = 91 at 21.9 Hz, while the fractional delay filter makes the notch at 22 Hz exactly. For the 5th harmonic at 110 Hz,
he proposed method also generates zero gain so that zero error is achieved. The above results demonstrate that the proposed
ractional delay filter (19) can significantly address the non-integer delay for a fixed sampling rate.

.2. Design of compensation filter 𝐿(𝑧−1)

In generally, the compensation filter 𝐿(𝑧−1) is designed as the inversion of the linear plant 𝑃 (𝑧−1). However, the nonminimum-
hase zeros commonly exist for the flexure-based compliant devices [36]. Therefore, the model 𝑃 (𝑧−1) is decomposed as

𝑃 (𝑧−1) =
𝐵𝑠(𝑧−1)𝐵𝑢(𝑧−1)

𝐴(𝑧−1)
, (20)

where 𝐵𝑠(𝑧−1) contains the stable zeros, and the roots of 𝐵𝑢(𝑧−1) are outside the unit circle. 𝐴(𝑧−1) contains the stable poles.
Furthermore, 𝐵𝑢(𝑧−1) can be rewritten as

𝐵𝑢(𝑧−1) = 𝑏𝑛 + 𝑏𝑛−1𝑧
−1 + 𝑏𝑛−2𝑧

−2 +⋯ + 𝑏0𝑧
−𝑛, (21)

where 𝑛 is the number of nonminimum-phase zeros. Through utilizing the zero-magnitude error tracking (ZMET) technology [37],
(𝑧−1) is designed as

𝐿(𝑧−1) =
𝐴(𝑧−1)

𝐵𝑠(𝑧−1)𝐵
𝑓
𝑢 (𝑧−1)

𝑧−𝑞 , (22)

where 𝐵𝑓
𝑢 (𝑧−1) is given by

𝐵𝑓
𝑢 (𝑧) = 𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 +⋯ + 𝑏𝑛𝑧

−𝑛, (23)

and 𝑞 can be determined by the order of 𝐴(𝑧−1) minus the order of 𝐵𝑠(𝑧−1)𝐵
𝑓
𝑢 (𝑧−1) to make 𝐿(𝑧−1) causal. Therefore, the delay term

is generally selected as 𝑑 ≥ 𝑞 taking into the sensor’s delay in practice.

.3. Stability analysis

In order to analyze the stability of the proposed method, the complementary sensitivity function from 𝑟(𝑘) to 𝑦(𝑘) according to
Fig. 1 is deduced as

𝑇𝑅𝐶 (𝑧−1) =1 − 𝑆𝑅𝐶 (𝑧−1)

=
𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) + 𝐿(𝑧−1)𝑃 (𝑧−1)𝑄(𝑧−1)

1 + 𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) +𝑄(𝑧−1)(𝐿(𝑧−1)𝑃 (𝑧−1) − 𝑧−𝑑 )
.

(24)

Define that

𝑄𝑓 (𝑧−1, 𝑝) =
(1 − 𝜌)(𝛼𝑧−1 + 𝛽 + 𝛼𝑧)𝑧−(𝑁∗−𝑑)

−𝑁∗ −1
. (25)
7

1 − 𝜌𝑧 𝐺𝑓 (𝑧 , 𝑝)
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Substituting (25) into (24), it is obtained that

𝑇𝑅𝐶 (𝑧−1) =
𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) + 𝐿(𝑧−1)𝑃 (𝑧−1)𝑄𝑓 (𝑧−1)𝐺𝑓 (𝑧−1)

1 + 𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) +𝑄𝑓 (𝑧−1, 𝑝)𝐺𝑓 (𝑧−1, 𝑝)(𝐿(𝑧−1)𝑃 (𝑧−1) − 𝑧−𝑑 )
. (26)

After rearrangement, the above equation is simplified as three transfer functions as

𝑇𝑅𝐶 (𝑧−1) = 𝐻1(𝑧−1)
1

1 +𝐻2(𝑧−1)𝑆𝐹𝐵(𝑧−1)
, (27)

where

𝑆𝐹𝐵(𝑧−1) =
1

1 + 𝑃 (𝑧−1)𝐶(𝑧−1)
,

𝐻1(𝑧−1) =𝑆𝐹𝐵(𝑧−1)[𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) + 𝐿(𝑧−1)𝑃 (𝑧−1)𝑄𝑓 (𝑧−1)𝐺𝑓 (𝑧−1)],

𝐻2(𝑧−1) =𝑄𝑓 (𝑧−1, 𝑝)𝐺𝑓 (𝑧−1, 𝑝)(𝐿(𝑧−1)𝑃 (𝑧−1) − 𝑧−𝑑 ).

(28)

Therefore, the stability of the closed-loop control system with FDFRC is guaranteed if the following conditions hold:

(1) The feedback controller 𝐶𝑓 (𝑧−1) can stabilize the closed-loop system, i.e. 𝑆𝐹𝐵(𝑧−1) is stable with all the roots of 1 +
𝑃 (𝑧−1)𝐶𝑓 (𝑧−1) are inside the unit circle.

(2) The roots of 1 +𝐻2(𝑧−1)𝑆𝐹𝐵(𝑧)−1 should also be inside the unit circle, i.e.,
‖

‖

‖

𝐻2(𝑧−1)𝑆𝐹𝐵(𝑧−1)
‖

‖

‖

< 1. (29)

With (28), we can further derive that

‖

‖

‖

𝑄𝑓 (𝑧−1, 𝑝)𝐺𝑓 (𝑧−1, 𝑝)
‖

‖

‖

<
‖

‖

‖

‖

‖

1 + 𝑃 (𝑧−1)𝐶𝑓 (𝑧−1)

𝐿(𝑧−1)𝑃 (𝑧−1) − 𝑧−𝑑
‖

‖

‖

‖

‖

. (30)

3.4. Design procedures

The design procedures of the proposed FDFRC are summarized as

(1) Determine the order 𝐾 of the sub-filters 𝐅(𝑧−1) to construct the Vandermonde matrix.
(2) Calculate the coefficients of the sub-filters using (16), and then get the fractional delay filter by (17).
(3) Design the fractional delay filter with spectrum-selection property with (19) and implement it by Figs. 3 and 6.
(4) Design the compensation filter (22) and check the stability using (30).

Remark 1. It should be noted that the bandwidth of the fractional delay approximated by the sub-filters is determined by 𝑓𝑠 and 𝐾,
and the bandwidth should be large enough to cover the frequency components of the periodic reference. For a digital system with a
determined sampling rate, the larger order 𝐾 may lead to a complex implementation and a smaller one will reduce the bandwidth.
Thus, the choice of 𝐾 with a fixed 𝑓𝑠 is determined as 3 according to the magnitude responses in Fig. 4.

Remark 2. Note that once the order of the sub-filters 𝐾 is determined, the coefficients of the sub-filters will be fixed. Therefore,
the parameter 𝑝 is the only variable in the Farrow structure shown in Fig. 3, which is easy to realize different fractional delays
in comparison with traditional Lagrange interpolating method in [32,33], where the coefficients of the fractional delay should be
redesigned for different signals.

Remark 3. The stability of the controller is given as (30) if 𝐶(𝑧−1) can stabilize 𝑆𝐹𝐵(𝑧−1) through the discrete-time transfer
functions. Although various methods to check the stability of the fractional order systems have been proposed [30,31,38], this paper
concentrates on the overall stability when the fractional delay is approximated by 𝐺𝑓 (𝑧−1, 𝑝), i.e. the stability when implementing
the controller. This is more practical and useful for guiding the actual experiments. The similar method is also used in [39–41].

Remark 4. Through the proposed FDFRC, the hysteresis caused errors located at the fundamental frequency and the harmonics
can be compensated without complex and time-consuming modeling for periodic signals with non-integer 𝑁 . This can be observed
obviously from Fig. 7 in comparison with the design methods in [34,42].

4. Application to piezoelectric nanopositioning stages

4.1. Experimental setup

The proposed controller is verified on the nanopositioning stage with flexure-based compliant mechanism (model: P-561.3CD
from Physik Instrumente). The control voltage is 0–10 V generated by PCI 6289 from National Instrument, and then sent to the piezo
8

amplifier module E-503.00 to actuate the actuator. The measured position is got by the capacitive sensor and passed to the control
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Fig. 8. The experimental setup of the piezoelectric nanopositioning stage. (a) experimental platform. (b) block diagram of control system.

Fig. 9. Frequency responses of identified model and measured data for 𝑥 axis.

system via data acquisition card PCI 6289. The control system is developed in MATLAB/Simulink software and built to the target
PC to achieve real-time control. The detailed setup is illustrated in Fig. 8. The linear model used to design controller is identified
as

𝑃 (𝑧−1) = 0.012𝑧−1 − 0.045𝑧−2 + 0.109𝑧−3 − 0.118𝑧−4 + 0.532𝑧−5

1 − 3.794𝑧−1 + 6.25𝑧−2 − 5.49𝑧−3 + 2.556𝑧−4 − 0.505𝑧−5
. (31)

The frequency responses calculated by measured data and identified model (31) are given in Fig. 9, where it is obvious that 𝑃 (𝑧−1)
can describe the dynamics of the piezoelectric nanopositioning stage accurately enough. Furthermore, the first resonant frequency
with a low damping ratio is located at 210 Hz, and a pair of nonminimum-phase zeros are at 165 Hz. Based on the model, we
proceed to design the proposed FDFRC without modeling hysteresis nonlinearity. It should be noted that the dynamics of 𝑦 axis
is similar to that of 𝑥 axis due to the symmetric structure. For simplicity, only the design and analysis for 𝑥 axis are given in this
section.

4.2. Controller implementation and performance analysis

The baseline feedback controller 𝐶𝑓 (𝑧−1) is designed by combining a notch filter to reduce vibration and an integral term to
enhance the steady-state tracking performance. After discretizing for digital system implementation, 𝐶𝑓 (𝑧−1) is given as

𝐶𝑓 (𝑧−1) =
0.063 − 0.037𝑧−1 − 0.038𝑧−2 + 0.061𝑧−3

1 − 2.111𝑧−1 + 1.963𝑧−2 − 0.852𝑧−3
. (32)

For the design of the sub-filters 𝐅(𝑧−1), through using (15) and (16) selecting 𝐾 = 3, we can obtain that

⎧

⎪

⎪

⎨

⎪

⎪

𝐹0(𝑧−1) =1,

𝐹1(𝑧−1) = − 1.833 + 3𝑧−1 − 1.5𝑧−2 + 0.333𝑧−3,

𝐹2(𝑧−1) =1 − 2.5𝑧−1 + 2−2 − 0.5𝑧−3,
−1 −1 −2 −3

(33)
9

⎩

𝐹3(𝑧 ) = − 0.167 + 0.5𝑧 − 0.5 + 0.167𝑧 .
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Fig. 10. Sensitivity transfer functions of the closed-loop system under different conditions. (a) 𝑆𝐹𝐵 (𝑧−1) and 𝑆𝑅𝐶 (𝑧−1) with 𝜌 = 0.4. (b) 𝑆𝑅𝐶 (𝑧−1) with the fractional
delay filter for different 𝜌.

Fig. 11. Tracking performance of different controllers with 22 Hz triangular wave input for 𝑥 axis.

With 𝑑 = 5, 𝛼 = 0.25, 𝛽 = 0.5, the sensitivity transfer functions of 𝑆𝐹𝐵(𝑧−1) and 𝑆𝑅𝐶 (𝑧−1) with different delays under 22 Hz are
emonstrated in Fig. 10(a). It can be observed that the proposed FDFRC with fractional delay compensation can generate sufficiently
ow gains at the foundational frequency and its harmonics of 22 Hz exactly. For 𝑆𝑅𝐶 (𝑧−1) with the integer 𝑁 = 91, 92, the locations of
ow gains deviate from the desired frequency, which will deteriorate the tracking performance severely. It also should be noted that
he implementation of FDFRC will amplify the non-periodic errors shown in Fig. 10(a). Therefore, 𝜌 should be selected appropriately
ccording to the magnitude response of 𝑆𝑅𝐶 (𝑧−1) in Fig. 10(b). The non-periodic errors can be alleviated by a larger 𝜌. Thus, 𝜌 is set
.01 in the first 18 periods for fast convergence, and gradually increased to 0.9 in the next periods, then keep it finally to improve
obustness in the following experiments.

. Experimental results

In this section, various experiments are tested to discuss and analyze the proposed method when triangular waves for 𝑥 axis and
issajous scanning for 𝑥−𝑦 axes are as the input references, respectively. Besides the proposed FDFRC, another three controllers are
lso developed: (1) FBC given in (32); (2) TRC without fractional delay filter [34]; (3) FORC designed by Lagrange interpolation [32].

.1. Tracking results of triangular waves

In order to test the performance of tracking multi-harmonic reference, the triangular waves commonly used for raster scanning
re given as the input for 𝑥 axis. The frequencies are set as 22 Hz, 24 Hz, and 25 Hz, respectively, and the tracking performance
re illustrated in Figs. 11–13. It is evident that the FBC obtains the worst performance at 22 Hz with the root-mean-square error
𝑒𝑟𝑚𝑠) and maximum error (𝑒𝑚𝑎𝑥) at 2.3591 μm and 3.4666 μm, respectively. As we can observe it from Fig. 11, the output amplitude
f FBC is much lower than the desired position 5 μm and there exists large phase delay due to the limited closed-loop bandwidth.
he similar conclusion can also be obtained through the tracking results shown in Fig. 12 and Fig. 13.

For triangular waves with 22 Hz, the calculated delay parameter 𝑁 is 90.909, which is non-integer. The experimental results
f 𝑒 and 𝑒 versus period of 22 Hz reference for different controllers are demonstrated in Fig. 14. The tracking errors of TRC,
10
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Fig. 12. Tracking performance of different controllers with 24 Hz triangular wave input for 𝑥 axis.

Fig. 13. Tracking performance of different controllers with 25 Hz triangular wave input for 𝑥 axis.

Fig. 14. Experimental results of 𝑒𝑟𝑚𝑠 and 𝑒𝑚𝑎𝑥 versus period of 22 Hz reference for different controllers.

FORC, and FDFRC are gradually converged to the steady state with the increasing number of signals’ period. Furthermore, the
statistical steady-state results in Table 1 are calculated after 20 periods to evaluate the converged performance. The 𝑒𝑟𝑚𝑠 and 𝑒𝑚𝑎𝑥
of TRC at 22 Hz is 0.1479 μm and 0.3579 μm, respectively. From the zoom-in figure in Fig. 14, the largest error occurs around the
peak of the triangular wave caused by the non-integer delay in TRC. Both FORC and FDFRC could further enhance the tracking
performance in comparison with TRC. The 𝑒𝑟𝑚𝑠 and 𝑒𝑚𝑎𝑥 are 0.0141 μm and 0.0928 μm for FORC, while 0.0139 μm and 0.0886 μm for
FDFRC. The performance of the two controllers is similar because they are all dedicated to deal with the problem of non-integer
delay. For the tracking results of 24 Hz with 𝑁 = 83.333, FORC and FDFRC still achieve the best performance at about 𝑒 of
11
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Table 1
Statistical Steady-State Results of Triangular waves for Different Controllers.

Statistical Errors (μm) 22 Hz 24 Hz 25 Hz

FBC e𝑟𝑚𝑠 2.3591 2.3183 2.2907
e𝑚𝑎𝑥 3.4666 3.5515 3.5539

TRC e𝑟𝑚𝑠 0.1479 0.0683 0.0222
e𝑚𝑎𝑥 0.3579 0.2087 0.1168

FORC e𝑟𝑚𝑠 0.0141 0.0181 0.0223
e𝑚𝑎𝑥 0.0928 0.1156 0.1192

FDFRC e𝑟𝑚𝑠 0.0139 0.0181 0.0219
e𝑚𝑎𝑥 0.0886 0.1150 0.1178

Fig. 15. Tracking performance of different controllers with Lissajous scanning for 𝑥 axis.

0.0181 μm, 𝑒𝑚𝑎𝑥 of 0.1156 μm, i.e, 0.362%, and 2.312% of the tracking stroke, respectively. However, it should be noted that the
parameter 𝑝 determined by the frequency of reference is the only variable in the proposed method because the sub-filters in the
Farrow structure are fixed as (33). However, the coefficients using Lagrange interpolating method in FORC should be redesigned for
different signals. For example, for the signals’ tracking with 22 Hz and 24 Hz, the proposed method only needs to change parameter
𝑝 from 0.909 to 0.333. In contrast, all the coefficients of integer delay branches in FORC must be calculated off-line and assigned
again for implementation. This advantage of FDFRC makes it easy and simple to realize different fractional delays in the fixed
sampling rate system.

Furthermore, the 25 Hz reference, i.e. 𝑁 = 80 is fed as the input, and the detailed tracking results are shown in Fig. 13. Due to
the integer delay, RC, FORC and FDFRC achieve the similar performance at about 𝑒𝑟𝑚𝑠 of 0.0219 μm, 𝑒𝑚𝑎𝑥 of 0.1178 μm, i.e, 0.438%,
and 2.356% of the tracking stroke, respectively. The above results demonstrate that the proposed method can improve the tracking
performance of triangular waves with various frequencies significantly, and is easier and simpler for practical implementation.

5.2. Tracking results of Lissajous scanning

In the application of scanning imaging in atomic force microscopy, the ratio of 𝑥 axis and 𝑦 axis input frequencies for Lissajous
scanning should satisfy

𝑓𝑥
𝑓𝑦

= 2𝑀
2𝑀 − 1

, (34)

where 𝑀 is a positive integer. It is clear that it is unavoidable to generate the non-integer delay unless a larger sampling rate is
adopted for the control system that may lead to large computing burden. In addition, according to the work in [36], the cross-
coupling effects between 𝑥 and 𝑦 axis require the sufficient robustness of the controller to external disturbance. Therefore, the
tracking results of Lissajous scanning for 𝑥 − 𝑦 axes are tested in this subsection, where the references of both axes are sinusoidal
waves with 27 Hz and 26.3864 Hz, respectively, which satisfies (34).

The experimental results of 𝑥 and 𝑦 axes are plotted in Fig. 15 and Fig. 16, respectively. The tracking results of different controllers
in 𝑥–𝑦 plane are given in Fig. 17. Obviously, the FBC presents the largest tracking errors for the low closed-loop bandwidth so
that the scanning area is reduced significantly in comparison with the desired reference as is observed in Fig. 17. The other three
controllers are stable even in the present of cross-coupling effects. According to Table 2, the 𝑒𝑟𝑚𝑠 of TRC at steady state are 0.0163 μm
nd 0.1439 μm for 𝑥 and 𝑦 axes, respectively. The proposed method achieves the performance to 0.0055 μm and 0.0088 μm, which
12

mproves 66.257% and 94.220%, respectively. Similar to the results of triangular waves, the performance of FORC and FDFRC is



Mechanical Systems and Signal Processing 164 (2022) 108249Z. Feng et al.
Fig. 16. Tracking performance of different controllers with Lissajous scanning for 𝑦 axis.

Fig. 17. Tracking performance of different controllers with 𝑥 − 𝑦 Lissajous scanning.

Table 2
Statistical Steady-State Results of Lissajous Scanning for Different Controllers.

Statistical Errors (μm) 𝑥 axis 𝑦 axis

FBC e𝑟𝑚𝑠 2.7213 2.2723
e𝑚𝑎𝑥 3.8394 3.2218

TRC e𝑟𝑚𝑠 0.0163 0.1436
e𝑚𝑎𝑥 0.0288 0.2061

FORC e𝑟𝑚𝑠 0.0055 0.0083
e𝑚𝑎𝑥 0.0131 0.0154

FDFRC e𝑟𝑚𝑠 0.0055 0.0083
e𝑚𝑎𝑥 0.0130 0.0158
13
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nearly the same. The detail statistical results are listed in Table 2. However, the proposed method presents the merits of an easy
and simple implementation with the only parameter 𝑝 for 𝑥 and 𝑦 axes. The about results demonstrate that the FDFRC can track
rbitrary frequencies for Lissajous scanning with high tracking precision.

. Conclusion

In this paper, a control scheme named FDFRC is proposed for precision tracking of arbitrarily periodic signals. In order to deal
ith the non-integer delay problem in traditional RC, the fractional delay filter constructed by a Farrow structure is integrated into

he spectrum-selection filter so that the infinite gains at the harmonics of the references are achieved even the number of sample
oints per period of the signal is non-integer. Furthermore, the stability of FDFRC is analyzed in frequency domain to provide the
uideline for parameter selection. In comparison with Lagrange interpolation method, the proposed method is with less parameter,
asier and simpler to be implemented without redesigned the fractional delay coefficients for different integer/non-integer delays.
oreover, the comparative experiments on a piezoelectric nanopositioning stage are conducted to test the controllers’ performance.
he results show that the proposed method can improve the tracking performance with various frequencies under integer/non-

nteger delays significantly for the tracking of triangular waves. The experimental results of 𝑥− 𝑦 Lissajous scanning also verify the
high-precision performance of the proposed method comparing with the other controllers.

Although the proposed method can track arbitrarily periodic signals, the implementation of the spectrum-selection filter will
always amplify the non-periodic errors to a certain extent. In the further work, the feedback controller like sliding mode control [43]
or observer technology [18,19] will be explored to enhance the robustness of the overall system.
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