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A B S T R A C T

This paper presents a new scheme of adaptive sliding mode control (ASMC) for a piezoelectric ultrasonic motor
driven X–Y stage to meet the demand of precision motion tracking while addressing the problems of unknown
nonlinear friction and model uncertainties. The system model with Coulomb friction and unilateral coupling
effect is first investigated. Then the controller is designed with adaptive laws synthesized to obtain the unknown
model parameters for handling parametric uncertainties and offsetting friction force. The robust control term
acts as a high gain feedback control to make the output track the desired trajectory fast for guaranteed robust
performance. Based on a PID-type sliding mode, the control scheme has a simple structure to be implemented
and the control parameters can be easily tuned. Theoretical stability analysis of the proposed novel ASMC
is accomplished using a Lyapunov framework. Furthermore, the proposed control scheme is applied to an
X–Y stage and the results prove that the proposed control method is effective in achieving excellent tracking
performance.
. Introduction

There are many applications nowadays that require precision mo-
ion control, e.g., atomic force microscopy [1], nanopositioner [2,3]
icrogrippper [4], robot-assisted surgeries, medical devices [5–7], and

o on. In these applications, piezoelectric actuators are widely used
ecause of their ultra-high resolution and fast response, which make
hem achieve high-precision and high-speed motion. Piezoelectric ul-
rasonic motor (PUM) is a type of direct-drive motor that is powered
y a piezoelectric component [8]. Due to the merits of the piezoelectric
omponent, the PUM has a compact size and can achieve high-speed
nd high-precision motion. However, designing a controller that can
chieve high tracking performance is still a challenge to these motion
ystems due to nonlinear behavior of actuators, parametric uncertain-
ies, and unmodeled disturbances. For a PUM, the nonlinear friction
orce is the main factor affecting tracking performance. Furthermore, a
-DOF stage, consisting of two orthogonal ultrasonic motors, gives rise
o problems due to coupling if (a) there is any deviation from angles at
he time of installation of the stage, and (b) there is any misalignment
etween the center of the load and the center of the stage [9].

Many robust controllers have been proposed in the published litera-
ure to address the issues of uncertainties and disturbances, e.g., distur-
ance observer-based control [10–13], sliding mode control (SMC) [14–
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17], adaptive robust control (ARC) [18], intelligent control [8], neural
network-based (NN-based) control [19,20], and so on. These works
used different devices to underscore the effectiveness of their methods.
In observer-based controllers, nonlinearities, model uncertainties, and
disturbances are treated as a lump disturbance to a nominal linear
model. A disturbance observer is often adopted to observe and com-
pensate the lump disturbance and feedback control is used to achieve
the object of desired tracking performance. SMC is a practical variable
structure control to cope with all bounded disturbances and achieve
asymptotic tracking performance. An extended state observer (ESO)
combined with SMC is an effective strategy [21]. In [11], disturbance
compensation via ESO is developed and a model-based second-order
sliding function is designed. It also concludes that the integral sliding
mode control can improve the tracking performance by introducing
the integral term of tracking error [13]. However, ESO is limited by
its bandwidth and, therefore, can only perform well for low-frequency
reference trajectories. It is reported in [22] that a static friction model
can predict the friction phenomenon with almost the same performance
as using a dynamic friction model. The static friction model is identified
and used for feedforward compensation in [22,23]. Although many
friction models are proposed in [24], the traditional compensation
schemes using the static friction model may not be valid in some
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practical applications where the friction force is varying and uncer-
tain. Therefore, unknown model uncertainties and friction force should
be estimated and compensated in real-time to improve the control
accuracy of SMC and achieve tracking faster desired trajectories.

Adaptive control is a good choice for improving tracking accuracy
when model parameters to be estimated are unknown but constant.
A robust controller that merges sliding-mode and adaptive schemes is
proposed in [25], where the adaptive part is used to cope with unknown
slow-time varying disturbances. ARC proposed in [26] is very suitable
for a class of systems with unknown nonlinear model. It combines
parametric adaptive law with deterministic robust control, namely high
gain feedback control. The system model established in [26] consists
of a dynamic part with Coulomb friction, and the unknown parameters
are estimated using adaptive law. This control scheme has been suc-
cessfully applied to many practical applications [18,27,28]. However,
it is mentioned in [29] that ARC can only guarantee the tracking
error convergences to a specified limit set because the feedback control
gains cannot be set to infinity. The robust integral of the sign of error
(RISE) controller developed in [30] can achieve asymptotic tracking
performance when the disturbance is assumed to be second-order deriv-
able and bounded [31]. A RISE-based adaptive controller (ARISE) is
proposed in [29] for a hydraulic system. It is worth noting that for a
second-order system, the essential difference between ARISE and ARC is
that the high gain feedback control law in ARISE includes the integral
terms of the error and the sign of the error. When the disturbance is
small, the integral term of the sign of the error is negligible. It is also
verified that introducing integral terms of error to the control law can
improve the tracking performance in [13,32]. It should be noted that
an integral sliding surface not only can reduce the steady-state error but
also can provide faster response and more accurate trajectory tracking
performance than the common PD-type sliding surface. To integrate
the integral term, the PID-type sliding mode function has been adopted
in [32–34].

Though the existing control strategies for systems with nonlinear
friction and uncertainty show great improvements, the following two
aspects can be further improved: (a) it is important to adopt active
compensation to alleviate the nonlinearity and uncertainty so that the
controller can achieve improved performance and be suitable for fast
tracking, and (b) the asymptotic tracking performance can be obtained
by integrating the benefits of the SMC and the advanced controller
ARISE, which can be realized by using a PID-type sliding mode func-
tion. Therefore, this paper presents a novel adaptive sliding mode
control (ASMC) by combining PID-type sliding surface-based SMC and
adaptive control, which makes the proposed controller have advantages
in terms of strong robustness and high tracking performance.

The main contributions of this paper can be summarized as follows.
First, it is desirable that a controller is designed with a clear structure,
is easy in tuning, and can achieve high tracking performance. There
is no requirement to have a specific knowledge of the friction and
cross effect. The adaptive control law is designed to estimate the model
parameters and disturbance simultaneously. The adaptive control is
designed to realize active compensation and relieve the chattering phe-
nomenon. The PID-type sliding mode including the integral term with
a simple structure can further improve the tracking performance. More
precisely, the proposed controller (ASMC) consists of two terms: (1) a
model compensation term related to the reference trajectory which is
adjustable with estimating model parameters via adaptive technique,
and (2) a feedback robust term. The stability of the proposed control
scheme is proven in the Lyapunov framework. Finally, to demonstrate
the effectiveness of the proposed controller in achieving high tracking
performance, extensive comparative experiments are conducted on an
ultrasonic-motor-driven 2-DOF stage.

The main content of this paper is organized as follows. The system
description and control problem statement are introduced in Section 2.
Section 3 gives the detailed steps of controller design and stability anal-
ysis, and the experimental setup is described in Section 4. Experiments
and comparisons of the results are presented and discussed in Section 5.
2

Some conclusions are summarized in Section 6.
Fig. 1. Piezoelectric ultrasonic motor driven 2-DOF stage.

2. System description and control problem statement

2.1. 2-DOF system

The 2-DOF piezoelectric ultrasonic motor (PUM) driven stage con-
sists of two PUMs, shown in Fig. 1. The PUM moving along the 𝑌 -axis
is orthogonally mounted on the PUM moving along the 𝑋-axis, i.e.,
the stator (base) of 𝑌 -axis PUM is connected to the mover of 𝑋-axis
PUM via threaded fasteners. Due to the series connection between the
two PUMs, there is no motion along 𝑌 -axis when only the 𝑋-axis PUM
is driven, while there is motion along 𝑋-axis because of interacting
friction force when only the 𝑌 -axis PUM is driven. The coupling effect
exists in this X–Y stage.

For each PUM, the piezoelectric component induced in the stator
is used both to impart motion and to modulate the frictional forces
present at the interface, and the output platform is bonded on the
mover moving along the linear guide. The ultrasonic vibration of the
piezoelectric component can power the motion of the moving end.
During the motion, the friction at the interface between the moving
end and the corresponding unmoving base arises and results the system
affected by nonlinearity.

2.1.1. Y-axis
The 𝑌 -axis PUM acts as a single-axis PUM. In [35], the hysteresis,

creep, cross-coupling, and external disturbance are consolidated into an
output disturbance. Similar to the modeling approach in [35], the un-
modeled uncertainty and disturbance are treated as a total disturbance.
The following dynamic model is used to describe it [23]:

�̈�(𝑡) + a𝑦1�̇�(𝑡) + a𝑦0𝑦(𝑡) = b𝑦0𝑢𝑦(𝑡) + 𝑓𝑦(𝑡) + 𝑑𝑦(𝑡), (1)

where 𝑢𝑦 and 𝑦 are the control input and position output, respectively.
a𝑦1, a𝑦0, and b𝑦0 are the model coefficients. 𝑓𝑦 is the nonlinear term and
𝑑𝑦 is disturbance.

The nonlinear term is resulted from the characteristics of the piezo-
electric component and the drive mechanism, including hysteresis and
friction. Frictional force at the interface is the major nonlinear compo-
nent of this PUM. In this paper, the nonlinear term is described by a
Coulomb friction model 𝑓𝑦𝑐 added to an uncertain nonlinear component
𝛥𝑓𝑦.

𝑓𝑦(𝑡) = 𝑓𝑦𝑐 (𝑡) + 𝛥𝑓𝑦(𝑡). (2)

It is found from the open loop test that, the friction is asymmetric in
forward and backward motions [23]. Thus the model of the nonlinear
term can be modeled by Coulomb friction plus a constant,

𝑓𝑦𝑐 (𝑡) = f𝑦1sign(�̇�) + f𝑦2, (3)

where ‘sign’ is the signum function, and f𝑦1, f𝑦2 are unknown model
coefficients.
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In practical situation, the bounded model uncertainty and distur-
bance are combined into 𝑝𝑦(𝑡),

𝑝𝑦(𝑡) = 𝛥𝑓𝑦(𝑡) + 𝑑𝑦(𝑡). (4)

2.1.2. X-axis
Due to the physical configuration of the stage, the dynamics of the

𝑋-axis PUM is affected by the coupling with 𝑌 -axis motion. Considering
the motion principle of PUM, the friction force drives the moving end,
𝑋-axis motion is also partly affected by the friction force of 𝑌 -axis
when the two axes are non-orthogonal and interact with each other.
The dynamics model of the 𝑋-axis PUM can be expressed as:

�̈�(𝑡) + a𝑥1�̇�(𝑡) + a𝑥0𝑥(𝑡) = b𝑥0𝑢𝑥(𝑡) + 𝑓𝑥(𝑡) + 𝑓𝑦𝑥(𝑡) + 𝑑𝑥(𝑡), (5)

where 𝑓𝑦𝑥 is the coupling from 𝑌 -axis motion to 𝑋-axis, 𝑥 is the
output displacement, and other corresponding parameters have the
same definitions like those for 𝑌 -axis.

𝑓𝑥(𝑡) = 𝑓𝑥𝑐 (𝑡) + 𝛥𝑓𝑥(𝑡), (6)

𝑓𝑥𝑐 (𝑡) = f𝑥1sign(�̇�) + f𝑥2, (7)

𝑓𝑦𝑥(𝑡) = c1sign(�̇�) + c2, (8)

where f𝑥1, f𝑥2, c1, c2 are unknown model coefficients.
The bounded model uncertainty and disturbance are combined into

a single variable 𝑝𝑥(𝑡),

𝑝𝑥(𝑡) = 𝛥𝑓𝑥(𝑡) + 𝑑𝑥(𝑡). (9)

2.2. Control problem statement

The dynamic models (1) of 𝑌 -axis and (5) 𝑋-axis are rewritten as

�̈�(𝑡) + a𝑦1�̇�(𝑡) + a𝑦0𝑦(𝑡) = b𝑦0𝑢𝑦(𝑡) + 𝑓𝑦𝑐 (𝑡) + 𝑝𝑦(𝑡), (10)

�̈�(𝑡) + a𝑥1�̇�(𝑡) + a𝑥0𝑥(𝑡) = b𝑥0𝑢𝑥(𝑡) + 𝑓𝑥𝑐 (𝑡) + 𝑓𝑦𝑥(𝑡) + 𝑝𝑥(𝑡). (11)

The system model can be expressed in a matrix form,

�̈� + 𝐁�̇� +𝐊𝐪 = 𝐓𝒖 + 𝐅𝐒(�̇�) + 𝐝𝑛 + 𝒅, (12)

for conciseness, where 𝒒 = [𝑦(𝑡), 𝑥(𝑡)]𝑇 , �̇� = [�̇�(𝑡), �̇�(𝑡)]𝑇 , and �̈� =
[�̈�(𝑡), �̈�(𝑡)]𝑇 are the vectors of the axis position, velocity and accel-
eration, respectively. 𝒖 = [𝑢𝑦(𝑡), 𝑢𝑥(𝑡)]𝑇 is the control input, 𝐒(�̇�) =
[sign(�̇�), sign(�̇�)]𝑇 is a sign function of the velocity, 𝐝𝑛 = [f𝑦2, f𝑥2+c2]𝑇 is
the nominal value of the unknown nonlinearity, and 𝒅 = [𝑝𝑦(𝑡), 𝑝𝑥(𝑡)]𝑇

is the residual disturbance. The disturbance 𝒅 is assumed to be bounded
|𝒅| ≤ 𝐝𝑀 . 𝐁 = diag[a𝑦1, a𝑥1], 𝐊 = diag[a𝑦0, a𝑥0], 𝐓 = diag[b𝑦0, b𝑥0], and
𝐅 = [f𝑦1, 0; c1, f𝑥1] are matrices of model coefficients, where diag(∙) is
a function that convert a vector ∙ to a diagonal matrix.

The control objectives are: (1) to achieve precise tracking of refer-
ence trajectory 𝑦𝑑 (𝑡) for 𝑌 -axis by handling the adverse effects nonlinear
frictional force 𝑓𝑦𝑐 (𝑡) and disturbance 𝑝𝑦(𝑡); (2) to achieve a precise
tracking of 𝑥𝑑 (𝑡) for 𝑋-axis in the presence of nonlinear friction 𝑓𝑥𝑐 (𝑡),
unilateral coupling 𝑓𝑦𝑥(𝑡) and disturbance 𝑝𝑥(𝑡). Design of an ASMC
control scheme based on PID-type sliding mode to achieve these control
objectives is presented in the next section.

3. Controller design

To overcome these control issues, an adaptive robust controller is
designed. Let us define the position error,

𝒆(𝑡) = 𝒒(𝑡) − 𝒒𝑑 (𝑡), (13)

where 𝒒𝑑 (𝑡) = [𝑦𝑑 (𝑡), 𝑥𝑑 (𝑡)]𝑇 is the desired position trajectories.
A PID type of sliding mode function based on the error (13) can be

designed as:

𝝈(𝑡) = [𝜎𝑦, 𝜎𝑥]𝑇 = �̇�(𝑡) + 𝐤1𝒆(𝑡) + 𝐤2
𝑡
𝒆(𝜏)𝑑𝜏, (14)
3

∫0
where 𝐤1 = diag[k𝑦1, k𝑥1] and 𝐤2 = diag[k𝑦2, k𝑥2] are control gain
matrices. It is easy to tune the control gains according to the rule that
the characteristic polynomial 𝑠2 + k𝑦1𝑠 + k𝑦2 = 0 and 𝑠2 + k𝑥1𝑠 + k𝑥2 = 0
need to be strictly Hurwitz, where 𝑠 is the Laplace operator, i.e., the
roots of the polynomials are with negative real parts. The gains are
selected as positive values in the subsequent experiments.

Theorem 1. For the system synthesized by (12), if the controller (15)
is adopted, the system can maintain robustness and enable the position
tracking error converging to zero asymptotically.

𝒖 = 𝐓−1[�̈�𝑑 + �̂��̇� + �̂�𝒒 − �̂�𝐒(�̇�) − �̂�𝑛
− 𝐤1�̇� − 𝐤2𝒆 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)]

= 𝐓−1[𝒖𝑎 − 𝐤1�̇� − 𝐤2𝒆 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)],

(15)

where ∙̂ is the estimated value of ∙, and 𝐤𝑠 = diag[k𝑦𝑠 , k𝑥𝑠] and 𝜷 = diag()
with  = [𝛽𝑦, 𝛽𝑥]𝑇 are positive control parameters that are designed to
be  ≥ 𝐝𝑀 + , and  = [𝜂𝑦, 𝜂𝑥]𝑇 is a vector contains the diagonal
elements of a designed positive diagonal matrix 𝜼 that can be arbitrarily
small, i.e., 𝜼 = diag(). 𝒖𝑎 consists of the desired trajectory and the model-
based adaptive compensation, where the desired trajectory is usually known
in advance.

Proof of Theorem 1. The model based adaptive control term is pre-
sented in detail,

𝒖𝑎 = �̈�𝑑 + �̂��̇� + �̂�𝒒 − �̂�𝐒(�̇�) − �̂�𝑛 = [𝑢𝑦𝑎 𝑢𝑥𝑎]𝑇 . (16)

For clearer presentation, the corresponding control laws 𝑢𝑦𝑎 for
𝑌 -axis and 𝑢𝑥𝑎 for 𝑋-axis are expanded as follows.

𝑢𝑦𝑎 = �̈�𝑑 + â𝑦1�̇� + â𝑦0𝑦 − 𝑓𝑦𝑐
= �̈�𝑑 + â𝑦1�̇� + â𝑦0𝑦 − f̂𝑦1sign(�̇�) − f̂𝑦2
= �̈�𝑑 + 𝝓𝑦�̂�𝑦,

(17)

̇̂𝜽𝑦 = −𝜞 𝑦𝝓𝑇
𝑦 𝜎𝑦, (18)

where 𝝓𝑦 = [�̇� 𝑦 − sign(�̇�) − 1] and 𝜽𝑦 = [a𝑦1 a𝑦0 f𝑦1 f𝑦2]𝑇 . �̂�𝑦 denotes
the estimated value of 𝜽𝑦 and �̃�𝑦 is the estimation error (�̃�𝑦 = �̂�𝑦 − 𝜽𝑦)
and 𝜞 𝑦 is the diagonal adaptation rate matrix.

Similar control design process is used for the 𝑋-axis, in which the
coupling is taken into account.

𝑢𝑥𝑎 = �̈�𝑑 + â𝑥1�̇� + â𝑥0𝑥 − 𝑓𝑥𝑐 − 𝑓𝑦𝑥
= �̈�𝑑 + â𝑥1�̇� + â𝑥0𝑥 − f̂𝑥1sign(�̇�) − f̂𝑥2
− ĉ1sign(�̇�) − ĉ2

= �̈�𝑑 + 𝝓𝑥�̂�𝑥,

(19)

̇̂𝜽𝑥 = −𝜞 𝑥𝝓𝑇
𝑥 𝜎𝑥, (20)

where 𝝓𝑥 = [�̇� 𝑥 −sign(�̇�) −sign(�̇�) −1] and 𝜽𝑥 = [a𝑥1 a𝑥0 f𝑥1 𝑐1 f𝑥2+c2]𝑇 .
�̂�𝑥 denotes the estimate of 𝜽𝑥, and 𝜞 𝑥 is the diagonal adaptation rate
matrix.

To facilitate the subsequent stability analysis of the system with the
control, a Lyapunov function 𝑉 is chosen as

𝑉 (𝑡) = 1
2
𝝈𝑇 𝝈 + 1

2
�̃�𝑇𝑦 𝜞

−1
𝑦 �̃�𝑦 +

1
2
�̃�𝑇𝑥𝜞

−1
𝑥 �̃�𝑥. (21)

With the system model (12) and the control law (15), it can be
obtained,

�̇� = �̈� + 𝐤1�̇� + 𝐤2𝒆
= (�̂� − 𝐁)�̇� + (�̂� −𝐊)𝒒 − (�̂� − 𝐅)𝐒(�̇�) − (�̂�𝑛 − 𝒅𝑛) + 𝒅 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)

= �̃��̇� + �̃�𝒒 − �̃�𝐒(�̇�) − �̃�𝑛 + 𝒅 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)

(22)

where, ∙̃ = ∙̂ − ∙.
Taking the derivative of (21), and taking into account (22), the
adaptive rules (18) and (20), the resulting expression can be simplified
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to

�̇� = 𝝈𝑇 �̇� + �̃�𝑇𝑦 𝜞
−1
𝑦

̇̂𝜽𝑦 + �̃�𝑇𝑥𝜞
−1
𝑥

̇̂𝜽𝑥
= 𝝈𝑇 [�̃��̇� + �̃�𝒒 − �̃�𝐒(�̇�) − �̃�𝑛 + 𝒅 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)]

− �̃�𝑇𝑦 𝝓
𝑇
𝑦 𝜎𝑦 − �̃�𝑇𝑥𝝓

𝑇
𝑥 𝜎𝑥

= 𝝈𝑇 [�̃��̇� + �̃�𝒒 − �̃�𝐒(�̇�) − �̃�𝑛 + 𝒅 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)]

− 𝝈𝑇 [�̃�𝑇𝑦 𝝓
𝑇
𝑦 , �̃�

𝑇
𝑥𝝓

𝑇
𝑥 ]

𝑇

= 𝝈𝑇 (𝒅 − 𝐤𝑠𝝈 − 𝜷sign(𝝈)).

(23)

If 𝜷 is chosen to hold the inequality  ≥ 𝐝𝑀 +, then,

�̇� = 𝝈𝑇 (𝒅 − 𝐤𝑠𝝈 − 𝜷sign(𝝈))

≤ |𝝈𝑇
|(𝐝𝑀 − 𝐤𝑠|𝝈| − )

≤ −𝐤𝑠‖𝝈‖2 + |𝝈𝑇
|(𝐝𝑀 − )

≤ −𝐤𝑠‖𝝈‖2 − |𝝈𝑇
|

≤ −𝐤𝑠‖𝝈‖2 ≤ 0.

(24)

When the parameters are chosen to satisfy the inequality mentioned
previously, it can be obtained that the time derivative of the Lyapunov
function has been proved to be semi-negative definite, which implies
that 𝝈, �̃�𝑦 and �̃�𝑥 are bounded with respect to time.

It can be also observed that �̇� is bounded because 𝝈, �̂�𝑦 and �̂�𝑥 are
bounded. Then, from (24), we have

lim
𝑡→∞∫

𝑡

0
𝐤𝑠‖𝝈‖2𝜏 ≤ −𝑉 (∞) + 𝑉 (0) ≤ 𝑉 (0), (25)

where the positive definiteness of 𝑉 has been used. By virtue of
Barbalat’s lemma, we can conclude that

lim
𝑡→∞

‖𝝈(𝑡)‖ = 0. (26)

Therefore, it can be concluded that the stability and the convergence
of tracking error will be guaranteed through employing the proposed
controller.

Remark 1. In the control law, 𝒖𝑎 is obtained using the dynamic model
and functions as the adjustable model compensation to handle the
nonlinear friction force for an improved tracking accuracy. The robust
control part of the control law in equation (15) is composed of a linear
feedback term −𝐤1�̇� − 𝐤2𝒆 − 𝐤𝑠𝝈 with 𝐤𝑠 > 0 to stabilize the nominal
system, and the variable structure sliding mode control law 𝜷sign(𝝈) to
attenuate the effect of estimation error.

Remark 2. When the parameter matrix 𝐤𝑠 is set large to satisfy |𝒅| −
𝐤𝑠|𝝈| ≤ 0, the control law can guarantee stability of the system without
the term 𝜷sign(𝝈). This means that 𝜷 can be chosen as a small value
to avoid the chattering problem of traditional SMC when 𝐤𝑠 is set to a
larger value within the suitable range.

The proposed adaptive robust control scheme is illustrated by the
block diagram shown in Fig. 2.

To apply the controller in practice, the tuning parameters are gains
𝐤𝟏,𝐤𝟐,𝐤𝐬, 𝜷 and adaptation rates 𝜞 𝑥,𝜞 𝑦, whose settings are shown as
follows.

The reaching law can be derived from the control law (15) as,

�̇� = −𝐤𝑠𝝈 − 𝜷sign(𝝈), (27)

where 𝐤𝐬 and 𝜷 in (27) are associated with the control stability and
the rate of reaching the sliding mode surface. They are both diagonal
matrices with positive constants.

Remark 3. If  ≥ |𝒅|, it can be seen that the system is stable as long
as 𝐤𝑠 ≥ 0. 𝐤𝑠 is the key to affect the rate of reaching the sliding mode
surface. However, 𝜷sign(𝝈) is a discontinuous term, large value of 𝜷
may cause chattering problem. To avoid this issue, 𝜷 needs to be set
as small as possible. Taking into account the stability and rapidity of
convergence, 𝜷 takes a smaller value and 𝐤𝑠 takes a larger value so that
4

the controller can achieve high tracking performance.
Fig. 2. Block diagram of the proposed control scheme.

Remark 4. 𝐤1 and 𝐤2 in (14) are related to the dynamic conver-
gence characteristics of the output displacement tracking performance,
which should be chosen as positive diagonal matrices to meet Hurwitz
stability criterion.

Remark 5. The adaptation rates 𝜞 𝑥,𝜞 𝑦 have influences on the esti-
mation speed of the unknown model coefficients 𝐁,𝐊,𝐅,𝒅𝒏. If they
are small, the estimation error will converge slowly. On the contrary,
too large value results in the estimation value vibrating sharply. These
parameters can be chosen empirically and adjusted in experiments for
better performance.

4. Experimental setup

4.1. Experimental system

Fig. 3 show the experimental setup. The system consists of two
PUMs (model: C-185, from Physik Instrumente Co., Ltd.) to realize X
and Y direction motion. Each PUM has a stroke limit of ±10 mm, and
the integrated linear encoder used for output displacement measure-
ment has a resolution of 0.1 μm. A dSPACE DS1104 embedded rapid
prototyping system is employed to implement the controller with a
sampling frequency of 1 kHz. A control PC is used to realize real-time
interface and control.

4.2. System identification

In order to identify the nominal model of the stage, an input signal
containing multiple frequency components is applied. The input–output
data is collected and imported to MATLAB for identification. Interested
readers may refer to an earlier publication [8] for details. Identified
transfer functions are:

𝐺𝑦 =
2299

𝑠2 + 182.7𝑠 + 460.8
(28)

and

𝐺𝑥 = 4940
𝑠2 + 202𝑠 + 248.4

. (29)

The corresponding coefficients 𝑏𝑦0 = 2299, 𝑎𝑦1 = 182.7, 𝑎𝑦0 = 460.8
and 𝑏 = 4940, 𝑎 = 202, 𝑎 = 248.4 will be used in the controllers.
𝑥0 𝑥1 𝑥0
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Fig. 3. Experimental setup.
4.3. Controller implementation

To conduct a comparison, three different controllers are designed
and implemented: (1) proposed ASMC, (2) conventional PID control,
and (3) SMC based on PID-sliding mode assisted by ESO.

ASMC: This is the adaptive SMC proposed in this paper. The con-
troller parameters are 𝐤1 = 𝐤2 = 𝐤𝑠 = diag[𝑤𝑐𝑦 𝑤𝑐𝑥] with 𝑤𝑐𝑦 =
2𝜋 × 80, 𝑤𝑐𝑥 = 2𝜋 × 100 and 𝜷 = diag[0.001 0.001] and the adaptive
rates are 𝜞 𝑦= diag[10 10 1000 10], and 𝜞 𝑥 = diag[10 10 1000 10 1]. The
initial values of the adaptive dynamic model parameters are set as the
identified values. The initial values of the nonlinear term coefficients
and disturbances are set to zero.

It should be noted that the coupling effect in the 2-DOF stage is
unilateral coupling, not cross coupling. The designed control is not
cross-coupled control, so there is no control allocation problem in the
experiments.

PID: Proportional–Integral–Derivative controller is widely used in
the industry. To ensure that the feedback gains are identical with the
proposed controller, the PID parameters are set as 𝐤𝑝 = diag[𝑤2

𝑐𝑦 𝑤2
𝑐𝑥],

𝐤𝑖 = diag[𝑤2
𝑐𝑦 +𝑤𝑐𝑦 𝑤2

𝑐𝑥 +𝑤𝑐𝑥], and 𝐤𝑑 = diag[2𝑤𝑐𝑦 2𝑤𝑐𝑥].

𝒖𝑃𝐼𝐷 = −𝐓−1(𝐤𝑝𝐞 + 𝐤𝑖 ∫ 𝐞 + 𝐤𝑑 �̇�). (30)

where 𝐓 = diag[𝑏𝑦0, 𝑏𝑥0].
SMC-ESO: The sliding mode control (SMC) with extended state

observer (ESO) is selected as an advanced comparative controller. It
has been successfully used in many applications as previously men-
tioned [11,12,21]. This controller also has advantage in dealing with
model uncertainties and disturbances. The controller is redesigned in
this paper, based on the same PID-type sliding mode. The unmodeled
nonlinear term and disturbance is treated as an extra state of the
system, and ESO is used to estimate and compensate it.

For simplicity, the system model for X and Y axes can be unified as

�̈�(𝑡) + a1�̇�(𝑡) + a0𝑥(𝑡) = b0𝑢(𝑡) + 𝑎(𝑡), (31)

where 𝑎(𝑡) includes all the model uncertainties and disturbance. �̂�(𝑡) is
estimated by the ESO.

Then the estimated �̂�(𝑡) is used as an ESO control law, and the SMC
is implemented same as the proposed controller but without parameters
adaptation. The resulting SMC-ESO controller is determined by

𝑢 = 𝑢1 + 𝑢𝑎 + 𝑢𝑠,

𝑢1 = − 1
b0

â(𝑡),

𝑢𝑎 =
1
b0

[�̈�𝑑 + a1�̇� + a0𝑥],

𝑢𝑠 = −k𝑠𝜎𝑥 − k1�̇� − k2𝑒 − 𝛽sign(𝜎),

(32)

where 𝑒 = 𝑥 − 𝑥𝑑 , 𝜎 = �̇� + k1𝑒 + k2 ∫ 𝑒. For fair comparison, all gains
of the feedback control term are chosen the same as those of PID and
ASMC. The controller parameters are k1 = 𝑤𝑐 , k2 = 𝑤𝑐 , k𝑠 = 𝑤𝑐 , and
𝛽 = 0.001. The observer bandwidth 𝑤0 is the only parameter for the
ESO and the value can be larger to estimate the disturbance more
accurately. But the estimation accuracy is influenced by the noise. It
is set as 𝑤 = 2 ∗ 𝜋 ∗ 150 in experiments by trial and error.
5

0

5. Experimental results

Comparison of performances of three different controllers are car-
ried out through several experiments. For comparison, we consider the
root-mean-square (RMS) error 𝜇𝑒, the maximum tracking error 𝑀𝑒, and
the average composition error 𝐴𝑒, which are defined as,

𝜇𝑒 =

√

√

√

√
1
N

N
∑

𝑖=1
𝑒2𝑖 ,

𝑀𝑒 = max(|𝑒|),

𝐴𝑒 =
1
N

N
∑

𝑖=1

√

𝑒2𝑥 + 𝑒2𝑦.

(33)

where N is the number of data samples used.

5.1. Coupling compensation

To verify the coupling compensation effect of the proposed con-
troller, a sine wave 𝑦𝑑 = sin(2𝜋 ∗ 10𝑡) is used for the motion along the
𝑌 -axis while keeping the 𝑋-axis with zero input. The 𝑋-axis position
outputs in open-loop and closed-loop are shown in Figs. 4(b) and 4(c)
respectively. It can be seen that in closed-loop the 𝑋-axis with the
proposed controller can effectively suppress the coupling error from
𝑌 -axis to 𝑋-axis. Then a circular motion is conducted, the reference
trajectories are 𝑦𝑑 = sin(2𝜋 ∗ 10𝑡) and 𝑥𝑑 = 1 − cos(2𝜋 ∗ 10𝑡). In case
1, the controller for 𝑋-axis is implemented without coupling adaption
(i.e., 𝑓𝑦𝑥 = 0), while in case 2 it is implemented with coupling adaption.
The tracking errors in the two cases are shown in Fig. 5. The RMS errors
of 𝑋-axis are 0.0074 mm in case 1 and 0.0068 mm in case 2. It can be
seen that considering coupling effect during design helps to improve the
tracking accuracy of 𝑋-axis by 8.1%. The improvement is not obvious,
which can be explained in two aspects: (a) the coupling effect is small
compared with the control input; (b) the controller designed with high
gain feedback control term can address such coupling as disturbance
effectively.

5.2. Sine wave trajectory (circular motion)

In this experiment, the 2-DOF stage is controlled to track several
circular motions. The performance indexes are collected in Table 1. It
is easily observed, by comparing the results of PID and SMC-ESO, that
ESO gives significant improvement in tracking accuracy by compen-
sating the disturbance using the additional estimated state. However,
with increasing frequency of circular motion, the tracking performance
with SMC-ESO becomes worse because of the bandwidth limitation.
When the reference changes fast, the ESO cannot estimate the lump
disturbance accurately enough. On the contrary, the ASMC can hold
high accuracy in fast changing reference tracking. Among the three
controllers, ASMC has the best performance, the RMS errors of the 1–
10 Hz reference signals are within 10 μm. In ASMC, the PID-type sliding
mode provides a robust feedback control. On the basis of this, adaptive
control is combined to improve the accuracy by using adaptation
of the unknown model parameters to compensate nonlinearities and
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Fig. 4. Position outputs comparison of open-loop and closed-loop.

Fig. 5. Tracking errors comparison of with and without consideration of coupling.

ncertainties. The experimental results show that adaptive control is
uitable for a class of systems with known structure but uncertain model
arameters.

The experimental results of the circular trajectory (1 mm and 10 Hz)
re shown in Figs. 6 and 7 for clear comparison. The proposed con-
roller achieves better performance than the other two controllers in
erms of transient and tracking accuracy. It is observed that the adap-
ive control can compensate nonlinear friction and model uncertainties
ffectively to achieve the best tracking performance with the same high
ain feedback control. The circular motion is shown in Fig. 8.

.3. Triangular wave trajectory

Besides, the experiment results of triangle waves have been con-
ucted. Due to triangular waves containing high frequency harmonics,
he reference with the frequency of 1 Hz and 2 Hz has been used in the
xperiments. The value of RMSE and MAXE tracking errors are listed in
able 2. The compared tracking results of triangle wave (2 Hz, 2 mm)
6

re shown the Fig. 9. m
Fig. 6. Tracking results comparison of X-axis on circular trajectory (1 mm, 10 Hz).

Table 1
Circular motion tracking errors.

Freq (Hz) Errors (μm) PID SMC-ESO ASMC

X Y X Y X Y

𝜇𝑒 10.85 10.37 6.86 6.89 2.59 2.84
1 𝑀𝑒 27.70 28.67 11.00 11.85 6.20 7.99

𝐴𝑒 13.69 9.68 3.64

𝜇𝑒 31.52 30.99 20.17 23.27 5.51 5.69
5 𝑀𝑒 47.83 48.58 30.65 30.45 15.22 13.19

𝐴𝑒 43.78 30.16 7.26

𝜇𝑒 45.96 46.50 31.53 33.49 6.76 7.68
10 𝑀𝑒 67.21 70.57 42.72 45.01 17.42 18.32

𝐴𝑒 65.12 45.57 9.23

Table 2
Indexes of triangular wave tracking.

Freq (Hz) 1 2

Errors (μm) 𝜇𝑒 𝑀𝑒 𝜇𝑒 𝑀𝑒
PID 12.07 36.82 21.85 50.83
SMC-ESO 7.73 30.87 19.01 42.89
ASMC 3.74 18.12 4.19 31.92

5.4. Robustness test

To verify the proposed controller can deal with disturbance ro-
bustly, the extreme disturbance 𝑑𝑖𝑠 = 0.1 + 0.01 sin(2𝜋𝑡 − 𝜋∕6) +
.01 sin(10𝜋𝑡) is randomly selected and applied to 𝑋-axis in the experi-
ents. Fig. 10 shows the compared tracking results for 10 Hz sine wave
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Fig. 7. Tracking results comparison of Y-axis on circular trajectory (1 mm, 10 Hz).

Fig. 8. Circular motion (1 mm, 10 Hz).

eference trajectory, and the error bars shown in Fig. 11 compares the
racking performance of the controller with and without the extreme
isturbance. It can be noted that the proposed method can reduce the
7

p

Fig. 9. Tracking results comparison of X-axis with of triangular wave (2 Hz, 2 mm).

Table 3
Indexes of robustness test against the extreme disturbance.

Freq (Hz) 1 5 10

Errors (μm) 𝜇𝑒 𝑀𝑒 𝜇𝑒 𝑀𝑒 𝜇𝑒 𝑀𝑒
PID 11.65 28.83 33.51 50.82 49.51 72.23
SMC-ESO 6.92 13.24 29.97 42.75 32.23 43.41
ASMC 2.54 7.68 4.59 14.42 7.32 16.74

impact of interference and achieve satisfied tracking accuracy. Table 3
gives the values of performance indexes.

5.5. Specified motion

Furthermore, to investigate the performance of the proposed con-
troller in practical application, a specified motion trajectory (for an
ear surgical operation) is chosen as an example, like that in [8].
Figs. 12 and 13 show the tracking results of the three comparative
controllers. The performance indexes are collected in Table 4. For the
tracking performance of ASMC, 𝜇𝑒 for X-axis and Y-axis are 3.41 μm and
3.68 μm, respectively. As seen in these data and figures, the proposed

SMC is valid for practical application and performs the best among
he three controllers for the specified motion. (See Fig. 14.)

. Conclusion

In this paper, a nonlinear adaptive robust controller with PID-
ype sliding mode is developed to deal with nonlinear friction and

arametric uncertainties and coupling effects for a 2-DOF stage driven
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Fig. 10. Tracking results comparison of X-axis with the extreme disturbance.

Fig. 11. Tracking errors comparison of with and without the extreme disturbance.

y linear PUMs. The model of the stage is derived with consideration of
ll uncertainties. Then, with a defined PID-type sliding mode function,
he adjustable model-based control is designed. The high gain feedback
erm makes the system stable while the adaptive control term com-
ensates for nonlinearities and uncertainties to improve the tracking
erformance. The control strategy is analyzed using a Lyapunov func-
8

ion for theoretical proof of its stability. The proposed control scheme
Fig. 12. Tracking results comparison of X-axis on specified motion.

Table 4
Specified motion tracking errors.

Errors (μm) PID SMC-ESO ASMC

X Y X Y X Y

𝜇𝑒 8.30 10.61 6.92 8.65 3.41 3.68
𝑀𝑒 23.00 27.06 20.80 22.2 10.87 11.70
𝐴𝑒 11.45 10.18 4.50

is easy to implement with the easy tuning of controller parameters.
Experiments are conducted on a 2-DOF stage to demonstrate the ef-
fectiveness of the proposed control scheme, which shows the proposed
ASMC control scheme performs better than the other two methods.
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