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A B S T R A C T

The piezo-driven nanopositioning stage (PNS) is a key device to provide fast and precise motions for applica-
tions such as micromanipulation, microfabrication, and microscopy scanning. However, inherent nonlinearities
associated with system perturbations bring difficulties to controller design. Regarding repetitive tasks for a
PNS, existing control schemes are mainly dedicated to model inversion-based iterative learning control (ILC),
which relies heavily on model accuracy. In this paper, a novel online identification and control scheme named
neural network-based ILC (NN-ILC) is proposed for repetitive tracking of the PNS. The ILC scheme reduces
repetitive errors due to the linear dynamics and invariable disturbance during each iteration. Neural networks
are integrated into the ILC scheme to minimize the residual non-repetitive errors resulting from unknown
nonlinear dynamics and model perturbations. Convergence results in both the time and iteration domains
are demonstrated according to the Lyapunov stability theory. Comprehensive experiments of sinusoidal and
triangular tracking references with different frequencies (5∼20 Hz) and different peak-to-peak amplitudes
(5∼ 20 μm) are conducted on a real-time control testbed. Results show that the root mean square error of the
proposed NN-ILC for 20 μm tracking cases is improved by up to 37% from feedback proportional-derivative
(PD) control with neural networks and by up to 20% from feedforward PD-type ILC.
1. Introduction

Repetitive tasks are widely executed in industrial applications, in-
cluding, but not limited to high-speed atomic force microscopy (AFM)
imaging [1], wafer positioning [2], additive manufacturing [3], gait
rehabilitation [4], hard disk driving [5]. For tracking of a desired
trajectory in such repetitive processes, iterative learning control (ILC)
has been proven as an effective method [6–8]. In an ILC scheme, the
control sequence for the current iteration is refined by learning the er-
ror information from previous executions. Then, tracking performance
can be improved and desired trajectory can gradually be obtained [7].
If the system is completely known or can be precisely identified, some
popular techniques can be applied directly to design ILC algorithms,
such as gradient-based ILC [9], norm-optimal ILC [3], model-inversion
based ILC [10]. However, system dynamics or parameters are never
perfectly known in many industrial applications [7–9,11–13]. For this,
the ILC design considering unknown systems needs to be addressed.
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A number of efforts have been made to design ILC for fully or
partially unknown systems. For nonlinear systems, comprehensive sur-
veys can be found in [8,14]. Among these existing schemes, adaptive
ILC (AILC) schemes are the most widely discussed for systems with
uncertain parameters. In [15], an AILC with a differential learning
law is proposed to achieve error convergence in 𝐿2 norm. The ILC
is also merged with the adaptive robust control to form an adaptive
robust iterative learning control (ARILC) in [16], which is proved
effective for both periodic and nonperiodic structured system uncer-
tainties. For a nonlinear system with a completely unknown control
gain, an AILC with a Nussbaum-type learning function is investigated
in [17]. The issue of parameter adaption in the time/iteration domain
is addressed in [18,19], thus a unified AILC (UAILC) framework is
proposed. In the UAILC framework, effects resulted from the iteration-
varying disturbance or initial tracking errors can be eliminated in the
learning processes. Unlike previous works which apply a deadzone
operator (in [15,16]) or projection mechanism (in [17,18]), fuzzy ILC
vailable online 15 February 2023
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schemes are developed by combining fuzzy modules with sliding-mode-
like module or neural network module [19] into the design of adaptive
learning functions. With respect to the robustness of AILC to uncertain-
ties, some efforts have been made to provide effective solutions. For
norm-bounded unstructured uncertainties, a robust ILC (RILC) is de-
veloped by replacing classical resetting conditions with more practical
alignment conditions in [20]. Considering the nonparametric uncertain-
ties in a physical system, a robust ILC controller is synthesized in [20].
Another interesting and meaningful aspect of the AILC is learning from
varying iteration lengths, and novel AILC schemes are demonstrated
effective for nonlinear systems with partial information in [21,22] and
for nonlinear dynamics which are not globally Lipschitz continuous
in [23].

Although most of the aforementioned AILC schemes such as those
in [15–18,20–23] are effective for a class of nonlinear systems, it is
noted that a crucial premise for these methods is that the unknown
parameters can be linearly parameterized with pre-defined nonlinear
functions [19]. Fortunately, if a system is completely unknown or
cannot be represented in such linear parameterization forms, neural
networks (NNs) can be utilized to estimate the unknown nonlinear
dynamics [24–28].

For a piezo-driven stage, which is widely utilized as a motion
producer in an AFM, precision motion tracking is a key issue when
designing the controller [29–31]. The difficulty lies in the modeling
and control of nonlinearities of the system. Some offline identification
and control schemes have been proposed to handle the nonlinearities.
Inherent characteristics such as creep, and hysteresis can be modeled
offline and compensated by feedforward terms. Specific methods can
be referred to in the review in [32,33]. To be specific, multi-layer
feedforward neural networks (MFNN) are applied in [34,35] to model
the nonlinearities offline by training a set of input/ouput data. This
is effective and accurate as proven in these works. However, on the
one hand, offline training consumes a lot of data and computation
for different work modes. On the other hand, external environment
changes, such as temperature variation [33], load variation [29,36],
etc, lead to parameter or model perturbation so that put forward higher
requirements on the robustness of the control system. The controllers
associated with the offline trained models will significantly deterio-
rate due to the parameter or model perturbation [36,37]. To some
extent, online identification and control can make an improvement
in terms of robustness and stability. Many closed-loop schemes have
been developed as surveyed in [38]. It should be noted that an online
recurrent-neural-network (RNN) identification associated with a model
predictive control (MPC) is proposed in [39] for the motion tracking of
piezo actuators. A composite MPC with feedforward hysteresis compen-
sation structure is developed in [40]. To model the strong asymmetrical
hysteresis nonlinearity, a nonlinear model predictive control scheme
is proposed in [41]. An online neural-network-based sliding mode
control is developed in [42] for robust adaptive motion tracking of
the piezo stage. However, for the online identification and control
of repetitive tasks of a piezo-driven nanopositioning stage, the above
methods cannot be applied directly.

To tackle the problem of precision motion tracking of repetitive
tasks for a piezo-driven nanopositioning stage, a novel online neu-
ral network-based ILC (NN-ILC) scheme is proposed. To reduce the
repetitive errors due to the linear dynamics and invariable disturbance
during each iteration, the iterative learning control scheme is built.
For the residual non-repetitive errors resulted from unknown nonlinear
dynamics and the parameter or model perturbation, the online neural
networks are integrated into the ILC scheme. The difficulty of controller
design is to make sure that the weights of the neural network can
converge in both the time domain and the iteration domain in the ILC
scheme. Through the cooperation of the ILC and online NNs, the motion
tracking precision can be improved for the repetitive trajectories of the
piezo-driven nanopositioning stages.

With comparisons to existing ILC schemes, the novelty of this work
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can be reflected in three aspects: 𝑚
(i) Unlike the feedforward methods in [34,35] where the NNs are
trained offline, the NNs in the ILC schemes are trained online in
each iteration so that they can handle the parameter or model per-
turbation. The method in [28] is proposed for a simple first-order
system with only simulation verification;

(ii) Compared to the deadzone or projection mechanism based ILCs
in [15–18] or the saturation function based ILCs in [19], no
truncation is operated for the identification or control processes
in the NN-ILC scheme;

(iii) Compared to the adaptive ILCs in [15–18,20–23], the proposed
NN-ILC can be used to a wider class of nonlinear systems whose
unknown parameters cannot be linearly parameterized with known
nonlinear functions. Besides, unlike the adaptive ILCs in [15–19]
which simply convert the iteration domain into extended time
domain and the error information from the last iteration were not
utilized to enhance the tracking performance in the subsequent
iteration, the proposed NN-ILC scheme aims to eliminate tracking
errors along with the iteration axis by using the error informa-
tion from previous iterations directly to formulate the learning
function.

The main contributions of this work include:

(i) A novel NN-ILC scheme is proposed to eliminate the repetitive
errors and the residual non-repetitive errors simultaneously in an
online execution to further improve the tracking performance for
systems subjected to unknown dynamics and nonlinearities.

(ii) An adaptive law to online update the weights of NN is devel-
oped and stability along the spanned time domain as well as
convergence in the iteration domain is proven for the NN-ILC
scheme.

(iii) Experimental results based on a customized piezo-driven nanopo-
sitioning stage are presented and analyzed for the reference of the
controller practicers.

The remainder of this paper is arranged as follows. Section 2 formu-
lates the control problem and system description, control objective, and
some useful definitions are also presented. Section 3 presents the NN-
ILC design as well as the convergence analysis. The experimental setup
is introduced in Section 4, and the experimental results are discussed
in Section 5. Finally, conclusions are made in Section 6.

2. Problem formulation

Notations: In the following sections, R, R+ and R𝑛 are denoted for
the real number space, positive real number space and real 𝑛-vector
space, respectively, 𝐿∞ represents the bounded signal space, 𝛺𝑐 ∶=
{𝐱 ∣ ‖𝐱‖ ≤ 𝑐} denotes the ball of radius 𝑐, ‖𝐱‖ is the Euclidean norm
f 𝐱, 𝐶𝑚 is the function spaces for which are 𝑚th-order continuous
ifferentiable, where 𝑐 ∈ R+, 𝑛 and 𝑚 are positive integers, and 𝐱 ∈ R𝑛.
hus, Theorem 1 is proved.

.1. System description

Generally, a piezo-driven nanopositioning stage can be modeled as
Hammerstein structure [33,37,42,43]. As shown in Fig. 1, a nonlinear
perator 𝐻(⋅) is cascaded with the linear dynamics 𝐺(𝑠), where 𝑠 is the
ontinuous variable in the frequency domain, 𝑢 ∈ R, ℎ ∈ R and 𝑥 ∈ R
re the driving voltage, intermediary hysteresis signal, and the output
osition, respectively. 𝑑𝑖𝑛 ∈ R and 𝑑𝑜𝑢𝑡 ∈ R are assumed to be unknown
nput or output disturbances from the environment.

As described in many existing works, such as [42,44–46], the en-
ire dynamical model of a piezo-driven nanopositioning stage with a
ammerstein structure in Fig. 1 can be expressed as,
�̈�(𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑥(𝑡) + 𝑑𝑜𝑢𝑡(𝑡) = 𝛾𝑢(𝑡) + 𝑑𝑖𝑛(𝑡) + ℎ(𝑡) (1)
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Fig. 1. The Hammerstein structure of a piezo-driven nanopositioning stage consisting
of a nonlinear operator cascaded with linear dynamics.

where, 𝑡 is the time variable, 𝑚, 𝑏, and 𝑘 denote the mass, damping
oefficient, stiffness of the system, 𝛾 is the piezoelectric coefficient
ith 𝛾 > 0. ℎ(𝑡): R𝑛 ↦ R is an unknown continuous nonlinear

unction including the hysteretic effect and other model uncertainties.
et 𝑥𝑑 (𝑡) ∈ R defined as a desired output. The following assumptions
re made about the class of systems described in Eq. (1).

ssumption 1. ℎ(𝑡) is of 𝐶1.

ssumption 2. System states 𝑥(𝑡), �̇�(𝑡), �̈�(𝑡) and the control signal 𝑢(𝑡)
in Eq. (1) are measurable.

Remark 1. To facilitate the online identification process, 𝑥(𝑡), �̇�(𝑡) are
assumed to be available. In case these variables cannot be obtained
directly, some indirect approaches ( sliding-mode observer with high-
order functions [47] and neural network based observer [48]) can be
adopted. This is not the focus of this paper and thus is omitted.

2.2. Some definitions

The following definitions and lemmas are listed as follows for
derivations and analysis in subsequent sections.

Definition 1 (Persistently Excited Condition [28]). A matrix or vector
unction 𝜙 is persistently excited (PE) with a level of excitation 𝛼1 > 0

if there are positive constants 𝑇 and 𝛼2 such that

𝛼1𝐼 ≤ ∫

𝑡+𝑇

𝑡
𝜙(𝜏)𝜙(𝜏)𝑇 𝑑𝜏 ≤ 𝛼2𝐼. (2)

emma 1 (Spatially Localized Approximation [24]). For a desired trajec-
ory 𝐱(𝑡) ∶ R+ ↦ 𝛺𝑐𝑥 , a function 𝑓 (𝐱) ∶ 𝛺𝑐𝑥 ↦ R can be approximated
by the radial basis function (RBF)-NNs with a finite amount of NN nodes
within a local region along 𝐱(𝑡) such that

𝑓 (𝐱) = 𝑊 ∗𝑇𝛷(𝐱) + 𝜁 (𝐱) (3)

with 𝑊 ∗ =
[

𝑤∗
1 , 𝑤

∗
2 ,… , 𝑤∗

𝑁
]

∈ R𝑀×𝑁 and 𝛷(𝐱) =
[

𝜙1(𝐱), 𝜙2(𝐱), … ,
𝜙𝑀 (𝐱)

]𝑇 ∈ R𝑀 are the weight vector and the PE regressor of the NNs,
where 𝑤𝑖 and 𝜙𝑘 denote the elements of the vectors 𝑊 ∗ and 𝛷 with an
index 𝑖 ∈ [1,𝑀] and 𝑘 ∈ [1, 𝑁], 𝜁 stands for the residual approximation
error.

2.3. Problem statement

According to the preliminaries, the control problem can then be
formulated here. The control aim is to develop a suitable ILC scheme
for repetitive motion tracking of a class of piezo-driven systems de-
scribed in Eq. (1). Applying the learning function designed from the
converged weight vector and the regressor of the NNs, the system under
designed NN-ILC should be capable of tracking the desired trajectory
and achieving zero stable errors within the iteration domain.

3. Controller design

In this section, the NN-ILC scheme is proposed, and the convergence
in both the time domain and iteration domain is analyzed.
114
3.1. Proposed NN-ILC

The system in Eq. (1) can be rewritten as,

𝑚𝑛�̈�(𝑡) + 𝑏𝑛�̇�(𝑡) + 𝑘𝑛𝑥(𝑡) − ℎ(𝑡)∕𝛾 + 𝑑𝑛(𝑡) = 𝑢(𝑡) (4)

where the nominal parameters are 𝑚𝑛 = 𝑚∕𝛾, 𝑏𝑛 = 𝑏∕𝛾, 𝑘𝑛 = 𝑘∕𝛾, the
lumped environmental disturbance 𝑑𝑛 describes the input and output
disturbances. In the following sections, the time variable 𝑡 is omitted
for brevity.

Denote the unknown term as 𝑓 (𝑥, �̇�) = 𝑏𝑛�̇� + 𝑘𝑛𝑥 − ℎ∕𝛾, and use
the NNs to estimate the unknown term such that 𝑓 (𝑥, �̇�) = 𝑊 ∗𝑇𝛷 + 𝜁𝑓
according to Lemma 1, then the system can be expressed as

𝑚𝑛�̈� +𝑊 ∗𝑇𝛷 + 𝜁𝑓 + 𝑑𝑛
⏟⏟⏟

𝐷

= 𝑢 (5)

where, 𝑊 ∗ and 𝛷 stand for the ideal weight matrix and the excita-
tion function matrix of the NNs respectively, 𝜁𝑓 is a high-order term
which stands for the residual error between the estimated and the real
dynamics, the lumped disturbance is denoted as 𝐷 ≜ 𝜁𝑓 + 𝑑𝑛.

Remark 2. It can be seen that 𝐷 accounts for the environmental
input/output disturbance as well as the residual error. Note that for
a physical system, the environmental disturbance 𝑑𝑛 is bounded, and
also the residual error 𝜁𝑓 is bounded, so that the lumped disturbance
is bounded as 𝐷 ⩽ �̄� with �̄� ∈ R+.

Define the tracking error as

𝑒 = 𝑥𝑑 − 𝑥 (6)

where 𝑥𝑑 is the given reference to be tracked.
Design an auxiliary variable related to the tracking error as

𝜎 = 𝑘𝑑 �̇� + 𝑘𝑝𝑒 (7)

where 𝑘𝑝 and 𝑘𝑑 are the feedback parameters to be determined. The
differentiation of 𝜎 is obtained as,

̇ = 𝑘𝑑𝑒 + 𝑘𝑝�̇�. (8)

Substituting Eqs. (5) and (6) into Eq. (8), it can be derived as,

𝑚𝑛
𝑘𝑑

�̇� = 𝑚𝑛𝑒 +
𝑚𝑛𝑘𝑝
𝑘𝑑

�̇�

= 𝑚𝑛�̈�𝑑 − 𝑚𝑛�̈� +
𝑚𝑛𝑘𝑝
𝑘𝑑

�̇�

= 𝑚𝑛�̈�𝑑 − 𝑢 +𝑊 ∗𝑇𝛷 +𝐷 +
𝑚𝑛𝑘𝑝
𝑘𝑑

�̇�

(9)

Then, the control law can be formulated as,

𝑢𝑗 = 𝑢1,𝑗 + 𝑢2,𝑗 (10)

with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1,𝑗 = (𝑘𝑝𝑒𝑗 + 𝑘𝑑 �̇�𝑗 )
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜎𝑗

+�̂� 𝑇
𝑗 𝛷 + 𝑚𝑛�̈�𝑑 + 𝑚𝑛𝑘𝑝

𝑘𝑑
�̇�𝑗

𝑢2,𝑗+1 = 𝑢2,𝑗 + 𝐿𝜎𝑗

(11)

where 𝑗 denotes the iteration in the ILC scheme, 𝑢1,𝑗 accounts for the
nonlinearity compensator and 𝑢2,𝑗 accounts for iterative control of the
repetitive errors in each iteration, 𝐿 ∈ (0, 1) is a learning gain to be
determined, �̂�𝑗 is the estimated weights of the NNs in the 𝑗th iteration
and it is updated based on the following law,
̇̂𝑊𝑗 = 𝛤𝛷𝜎𝑗 (12)

where 𝛤 ∈ R+ is a positive parameter to be determined. The residual
estimation error between the ideal weights 𝑊 ∗ and the trained weights
�̂� is denoted as �̃� ≜ 𝑊 ∗ − �̂� .
𝑗 𝑗 𝑗
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Remark 3. For the nonlinearity compensator 𝑢1,𝑗 , the residual errors
are threefold, i.e., the unmodeled environmental disturbance, the error
𝜁𝑓 between NNs and dynamics, and the error �̃�𝑗 between ideal NNs
and trained NNs. That is the reason to introduce the ILC scheme to
add an iterative control term as 𝑢2,𝑗 so that the residual errors can be
further reduced and finally the tracking performance will be improved.
It can be found that the convergence of the proposed control law is two-
dimensional, i.e., both in the time domain and in the iteration domain.
Herein, the convergence will be analyzed in the two domains.

3.2. Boundedness of errors in the time domain

Consider the following Lyapunov candidate function for the 𝑗th
iteration in the time domain as follows, where 𝜂 ≜ 𝑚𝑛∕𝑘𝑑 .

𝑆𝑗 =
1
2
𝜂𝜎2𝑗 +

1
2
�̃� 𝑇

𝑗 𝛤−1�̃�𝑗 (13)

Taking its time derivative and substituting 𝜂�̇�𝑗 using Eq. (9) as
derived in Appendix A in details, we have

�̇�𝑗 ≤ − 1
2
𝜎2𝑗 +

1
2
�̃�22,𝑗 . (14)

Therefore, if �̃�2,𝑗 is bounded, 𝑆𝑗 is bounded, which means that the
racking error as well as the NN weights will asymptotically converge
t the current iteration 𝑗.

3.3. Convergence in the iteration domain

Consider the following discrete-time Lyapunov candidate function
as

𝑉𝑗 = ∫

𝑇

𝜏=0

(

�̃�22,𝑗
)

𝑑𝜏 + 𝐿�̃�𝑗
𝑇 (0)𝛤−1�̃�𝑗 (0). (15)

Then, the increment function can be obtained as,

𝛥𝑉𝑗 = 𝛥𝑉𝑗+1 − 𝛥𝑉𝑗

=∫

𝑇

𝜏=0

(

�̃�22,𝑗+1 − �̃�22,𝑗
)

𝑑𝜏

+ 𝐿
(

�̃� 𝑇
𝑗+1(0)𝛤

−1�̃�𝑗+1(0) − �̃�𝑗
𝑇 (0)𝛤−1�̃�𝑗 (0)

)

.

(16)

Note that,

𝛥�̃�2,𝑗 = �̃�2,𝑗+1 − �̃�2,𝑗 = (𝐷 − 𝑢2,𝑗 − 𝐿𝑒𝑗 ) − (𝐷 − �̃�2,𝑗 ) = −𝐿𝜎𝑗 , (17)

therefore,

�̃�22,𝑗+1 − �̃�22,𝑗 = (𝛥�̃�2,𝑗 + �̃�2,𝑗 )2 − �̃�22,𝑗
= 𝛥�̃�22,𝑗 + 2𝛥�̃�2,𝑗 �̃�2,𝑗
= 𝐿2𝜎2𝑗 − 2𝐿𝜎𝑗 �̃�2,𝑗 .

(18)

Recall that 𝜎𝑗 �̃�2,𝑗 = �̇�𝑗 + 𝜎2𝑗 in Eq. (14), then

�̃�22,𝑗+1 − �̃�22,𝑗 = 𝐿2𝜎2𝑗 − 2𝐿(�̇�𝑗 + 𝜎2𝑗 )

= −𝐿(2 − 𝐿)𝜎2𝑗 − 2𝐿�̇�𝑗 .
(19)

Next, we have

𝛥𝑉𝑗 =∫

𝑇

𝜏=0

(

�̃�22,𝑗+1 − �̃�22,𝑗
)

𝑑𝜏

+ 𝐿
(

�̃� 𝑇
𝑗+1(0)𝛤

−1�̃�𝑗+1(0) − �̃�𝑗
𝑇 (0)𝛤−1�̃�𝑗 (0)

)

= − 𝐿(2 − 𝐿)∫

𝑇

𝜏=0
𝜎2𝑗 𝑑𝜏 − 𝐿∫

𝑇

𝜏=0
2�̇� 𝑑𝜏

+ 𝐿
(

�̃� 𝑇
𝑗+1(0)𝛤

−1�̃�𝑗+1(0) − �̃�𝑗
𝑇 (0)𝛤−1�̃�𝑗 (0)

)

(20)

with

∫

𝑇

𝜏=0
2�̇�𝑗 𝑑𝜏 = 𝜂𝜎2𝑗

|

|

|

𝑇

0
+ �̃� 𝑇

𝑗 𝛤−1�̃�𝑗
|

|

|

𝑇

0

= 𝜂𝜎2𝑗 (𝑇 ) − 𝜂𝜎2𝑗 (0) + �̃� 𝑇
𝑗 (𝑇 )𝛤−1�̃�𝑗 (𝑇 )

̃ 𝑇 −1 ̃

(21)
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− 𝑊𝑗 (0)𝛤 𝑊𝑗 (0).
The resetting condition for each iteration in an ILC scheme is
defined as,

𝑥𝑑 (0) − 𝑥𝑗 (0) = 𝑒𝑗 (0) = 0 (22)

and the iteration-domain update for the NN weights is defined as,

�̂�𝑗+1(0) = �̂�𝑗 (𝑇 ). (23)

Then, as presented in Appendix A in detail, we have

𝛥𝑉𝑗 = − 𝐿(2 − 𝐿)∫

𝑇

𝜏=0
𝜎2𝑗 𝑑𝜏 − 𝐿𝜂𝜎2𝑗 (𝑇 ) < 0 (24)

Therefore, the value of 𝑉𝑗 → 0 during iterations so that �̃�2,𝑗 → 0 is
guaranteed. Recall that in the time domain, then �̇�𝑗 ≤ − 1

2𝜎
2
𝑗 +

1
2 �̃�

2
2,𝑗 ≤ 0

an be guaranteed.
Hereto, proof of convergence in both the time domain and iteration

omain of the proposed control is completed.

.4. Overall design procedure

The overall control law is presented in Eq. (10). In practice, to
void the effects of the sensor noise on the ILC learning process, a
ow-pass filter 𝑄 = 1∕(𝜆𝑠 + 1) is normally added to screen out useless
nformation introduced by the sensor noise in high frequencies, where

is the frequency domain variable. Therefore, the iterative learning
ontrol component in Eq. (11) is modified as,

2,𝑗+1(𝑠) = 𝑄(𝑢2,𝑗 (𝑠) + 𝐿𝜎𝑗 (𝑠)) =
𝑢2,𝑗 (𝑠) + 𝐿𝜎𝑗 (𝑠)

𝜆𝑠 + 1
. (25)

Remark 4. The introduction of Q-filter will not affect the convergence
of ILC operations as can be referred to [3,6]. When 𝑄 = 1 for all
the frequencies, it means that all the frequency components including
the sensor noise learned and stored to generate 𝑢2,𝑗+1, however, as
the sensor noise is random and nonrepetitive, the usage of the noise
information is not beneficial for 𝑢2,𝑗+1. Thus, the bandwidth of the Q-
filter needs to be chosen according to the experimental testbed such
that noise is rejected by the ILC scheme.

The control block diagram of the proposed NN-ILC is shown in
Fig. 2. For the 𝑗th iteration, the control signal 𝑢𝑗 consists of two
components, i.e., a feedback term 𝑢1,𝑗 and a feedforward term 𝑢2,𝑗 .
Parameters associated with the scheme can be determined as following
steps:

(i) Feed a step or sweep signal into the nanopositioning stage, record
the input and output data, and identify the linear dynamics 𝐺 as
shown in Fig. 1.

(ii) Tune the feedback gains 𝑘𝑝 and 𝑘𝑑 alone for the system 𝐺.
(iii) According to the bandwidth of 𝐺, design the Q-filter so that the

bandwidth of Q is within that of 𝐺.
(iv) Initialize the neural networks and set 𝛤 as a small positive

constant at first.
(v) According to the bandwidth of 𝐺, design the Q-filter so that the

bandwidth of Q is within that of 𝐺. Set 𝐿 as a small positive
constant within (0, 1) at first.

(vi) Perform the ILC iterations, and tune 𝛤 and 𝐿 increasingly to
achieve a satisfied convergence speed during each iteration with
no fluctuations.

4. Experimental test

4.1. Experimental setup

To evaluate the performance of the proposed NN-ILC, an experi-
mental system with a custom-designed piezo-driven nanopositioning
stage is built as shown in Fig. 3. For the piezo-driven nanopositioning

stage, a piezo stack (model: RP150/5 × 5 × 18, from Harbin Chip
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Fig. 2. Block diagram of the proposed NN-ILC scheme in the 𝑗th iteration.
Technology Co., Ltd.) with a stroke of 20 μm driven by 150 V voltage is
adopted as the motion actuation. The motion is then amplified by the
compliant mechanism and recorded by an eddy current displacement
sensor (model: BZF-2, from Huarui Instrument Co., Ltd.).

The control signal (0–10 V) is produced by 16-bit digital to analog
interfaces (model: PCI-6259 I/O Board, from National Instrument Co.,
Ltd.) of the data output module in real-time xPC Target. A power
amplifier module (model: 7224, from AETechron Co., Ltd.) with a
fixed gain (16 times) amplifies the input voltage and generates ex-
citation voltage. The output displacement is read by a displacement
sensor and is subsequently passed to the data input module in the
PCI-6259 board in real-time xPC Target. The controller is designed
in MATLAB®/Simulink block diagram on the host computer (running
on Windows 10 and an Intel Core i5-7400 CPU @ 3.00 GHz), where
the Solver is chosen as fixed-step ode 4 with a step size being 50 μs,
and then built, downloaded, and executed on the xPC Target through
TCP/IP communications.

4.2. System identification

A step test is performed in the experiments to identify the nominal
model of the linear part 𝐺(𝑠). A second-order model is obtained using
the System Identification Toolbox in Matlab®as,

𝐺(𝑠) = 8.82 × 107

𝑠2 + 244.9𝑠 + 1.103 × 107
(26)

where the fitness between the measured data and the model is 93% as
shown in Fig. 4. Therefore, we have the nominal parameter as 𝑚𝑛 =
1∕(8.82 × 107), and the bandwidth of 𝐺 is around 820 Hz.

Remark 5. The goal to perform a system identification is twofold: (1)
to obtain a nominal model of the linear part to provide a feedback term
𝐶𝑛 as shown in Fig. 2 so that the NNs can focus on the linear part
approximation, (2) to measure the bandwidth of the system to provide
guidance for the tuning of the Q-filter.

4.3. Controller set

To evaluate the performance of the proposed NN-ILC scheme, an-
other four existing schemes are also implemented in this paper to
make fair comparisons. The controller set is arranged as: (1) Feedback
proportional–integral–derivative (PID) control alone; (2) Feedback PD
control with neural networks (PDNN); (3) Model prediction control
(MPC) [40]; (4) PD-type ILC [6]; (5) The proposed NN-ILC in this paper.
116
Fig. 3. Test results of step size and speed under different driving frequencies. (a) Step
results. (b) Speed results.

Fig. 4. Step responses of the measured data and simulated data of the identified model.
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4.3.1. PID
The control law can be given as,

𝑢 = 𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒𝑑𝑡 + 𝑘𝑑 �̇�, (27)

where 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 are the controller gains, 𝑒 is the tracking error.

4.3.2. PDNN
The control law can be given as,

𝑢 = 𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒𝑑𝑡 + 𝑘𝑑 �̇� + �̂� 𝑇𝛷, (28)

where 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 are the PID gains as in Eq. (27), �̂� is the estimated
weights and 𝜙 is the regressor of the NNs.

4.3.3. MPC
The control force for an MPC scheme generates from control op-

timization. For the controlled plant, an identified nominal model can
be used as the reference model. The control law can be obtained by
minimizing the cost function 𝐽 such that the constraints of variables
can be satisfied in a quadratic programming (QP) problem. The detailed
equations can refer to our previous work in [40].

In this work, we applied the command 𝑚𝑝𝑐 in MATLAB to formulate
the MPC controller, where the key parameters consist of a prediction
horizon property 𝑝 and a control horizon property 𝑚.

4.3.4. PD-ILC
The control law is

𝑢𝑗+1 = 𝑢𝑗 + 𝐿(𝑘𝑝𝑒𝑗 + 𝑘𝑑𝑒𝑗 ), (29)

where 𝑘𝑝 and 𝑘𝑑 are the PD gains.

4.3.5. NN-ILC
The RBFNN is adopted to approximate the unknown nonlinear

dynamics in the NN-ILC scheme. As given by Definition 1, a matrix
or vector is PE when Eq. (2) is satisfied. This means that for the
regressor 𝜙(𝑥) of NNs, the matrix ∫ 𝑡+𝑇

𝑡 𝜙(𝜏)𝜙(𝜏)𝑇 𝑑𝜏 ∈ R𝑀×𝑀 should
be positive definite over any finite interval. However, the condition of
PE is restrictive and often infeasible to implement or monitor online. It
should be noted that in this work, 𝜙(𝑥) is defined as a Gaussian function
with 𝛷(𝐱) =

[

𝜙1(𝐱), 𝜙2(𝐱),… , 𝜙𝑀 (𝐱)
]𝑇 ∈ R𝑀 , and for a 𝑚-nodes neural

networks, the radial basis function is designed as,

𝜙(𝑥)𝑘 = 𝑒𝑥𝑝(
−‖𝑥 − 𝑐𝑘‖2

2𝛽
), 𝑘 = 1, 2,… ,𝑀 (30)

where the adjustable parameter 𝑐𝑘 = [𝑐𝑘,1, 𝑐𝑘,2,… , 𝑐𝑘,4𝑁 ]𝑇 ∈ R4𝑁 is the
center vector, and 𝛽 is the width of the Gaussian function, 𝑀,𝑁 ∈ R+.
Although the input signal 𝑥 is not known as a prior, the suitable values
of 𝑐𝑘 and 𝛽 can be chosen to ensure the PE condition. In this work,
the center of each node is uniformly distributed in [−10, 10] × [−20, 20]
as shown in [49]. Furthermore, the parameter 𝛽 can be tuned online
increasingly to obtain satisfied convergence of the weights for each
reference. In experiments, the parameters are tuned manually to satisfy
the PE condition.

4.4. Parameter tuning

The parameters of feedback PID can be tuned preliminarily ac-
cording to the identified model in Eq. (26) and determined finally
based on the experimental results to obtain satisfied dynamic responses,
i.e., rising time and overshoot, etc. The parameters in NNs (𝛽 and 𝛤 )
are tuned online increasingly to obtain satisfied convergence of the
weights without deteriorated oscillations. For the parameters in ILC, it
should be noted that a PD type instead of a PID type is adopted because
the iterative learning process has the effect of integration. The most
commonly employed method for selecting the PD gains and L gain is
117

by tuning [6] to obtain a satisfied convergence speed. The bandwidth c
Table 1
Parameters of controllers.

Controller Notation Value

PID 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 0.025, 0.0128, 0.0001

PDNN 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 , 0.0015, 0.00118, 0.0001,
𝛽, 𝛤 5000, 150

MPC 𝑝, 𝑚 100, 100

PD-ILC 𝑘𝑝, 𝑘𝑑 , 0.7, 0.1,
𝐿, 𝜆 0.95, 1∕(2𝜋 ⋅ 800)

NN-ILC 𝑘𝑝, 𝑘𝑑 , 𝛽, 0.7, 0.1, 5000
𝛤 , 𝐿, 𝜆 150, 0.95, 1∕(2𝜋 ⋅ 800)

of the Q-filter is set as lower than that of the identified model of the
system to reject the influence of sensor noise. Finally, the parameters in
the NN-ILC can be determined in two steps. First, set the NN parameters
as those in the PDNN case. Second, set the ILC parameters as those
in the PD-ILC case. All the parameters of the four controllers in the
experiments can be tuned and selected as listed in Table 1.

5. Results

To evaluate the performance of the proposed controller, tracking
experiments of a set of references from 5 Hz to 20 Hz with amplitudes
ranging from 10 μm to 40 μm were conducted. For quantificational
comparisons among the four controllers, the root-mean-square of errors
(RMSE) is calculated as an index to revealing the overall tracking
performance. The RMSE can be obtained as,

RMSE =

√

∑𝑁
𝑖=1(𝑥(𝑖) − 𝑥𝑑 (𝑖))2

𝑁
. (31)

where 𝑥 and 𝑥𝑑 are the measured output and the desired reference, 𝑖 is
he discrete time index, 𝑁 is the length of the data.

.1. Overall comparative results of the controller set

Tracking results of 5 Hz sinusoidal reference with peak-to-peak
mplitude of 20 μm are shown in Fig. 5.

It can be intuitively seen from the overall tracking results that,
he traditional PID controller obtains the largest tracking errors with
pparent periodicity. This is mainly due to the failure to handle system
onlinearity and the inevitable lag induced by the PID as can be
een from the control voltage in Fig. 5(c). The MPC achieves better
erformance compared with PID and PDNN, whereas the gap between
PC and PDNN is narrow in this case. The tracking errors of PD-ILC

nd NN-ILC are close to each other for this case, except that it is more
table with slighter fluctuations for NN-ILC compared with PD-ILC. The
racking error with the proposed NN-ILC is the smallest and the most
indless among the five controllers. It also should be noted that the

ontrol voltage of NN-ILC is the largest with the smallest lag owing to
he cooperation mechanism of the feedback and feedforward terms in
he control law.

.2. Evolution process of the control voltage in NN-ILC

Taking a closer view to the evolution process of the control volt-
ge of the proposed NN-ILC. The control components of the NN-ILC
ontroller in the last iteration are shown in Fig. 6(a) to investigate
he contributions of each control term in the NN-ILC mechanism. It
an be seen that the feedback control voltage (i.e., 𝑢𝜎 + 𝑢𝑚 + 𝑢𝑛𝑛
ccounts for a small proportion of the total control voltage 𝑢, while the
eedforward control voltage (i.e., 𝑢𝑖𝑙𝑐 generated from NNs contributes
he most and dominates the total control voltage 𝑢. Due to the effect
f iterative learning, the 𝑢𝑖𝑙𝑐 grows instantly and the error drops so
hat the feedback control voltage is reduced accordingly. Finally, the

onverged control voltage is dominated by the feedforward. In addition,
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Fig. 5. Tracking results of sinusoidal reference at 5 Hz with the five controllers. (a) Overall tracking view. (b) Tracking errors. (c) Control voltages.
it can be seen that the phase lag resulting from the feedback terms can
be effectively compensated by the feedforward term.

The evolution process of the control voltage in the NN-ILC scheme
during the iterations is shown in Fig. 6(b) to investigate the dynamic
evolution of the control voltage. The control voltage of NN-ILC con-
verges to a steady value with the increasing iteration. At the 10th
iteration, the control voltage has reached closely the level at the 50th
iteration, which shows fast convergence of the NN-ILC mechanism.

According to the observations, it can be revealed that: (1) The feed-
back term is important to provide a stabilized plant for the installation
of the feedforward term and is beneficial for the fast convergence
of the feedforward term to some extent, which can be found in the
following comparisons with existing PD-ILC. (2) The iterative learning
mechanism is effective to compensate for the residual errors as the
tracking precision is improved from the first to the last iteration. (3)
The control voltage 𝑢𝑚 from the nominal model is minor which can also
be covered by the 𝑢𝑛𝑛, however, we here identify the nominal model to
obtain the bandwidth of the system so that the Q-filter can be designed
properly.

5.3. Tracking results of different frequencies

To make comprehensive comparisons among the controllers, a set
of tracking experiments of sinusoidal and triangular references ranging
from 5 to 20 Hz and from 5 to 20 μm (peak-to-peak magnitude) were
conducted. More results of the tracking cases can be found in Figs. 7
and 8. The corresponding statistic results of the RMSEs of all the cases
are depicted in Fig. 9.

As can be seen from Figs. 7 and 8, for the cases with different
frequencies and the same amplitudes, the errors are increased more or
less for each controller. Among the five controllers, PD-ILC and NN-ILC
are better than the feedback PID, PDNN and MPC. This is because the
feedback controller alone is always deteriorated due to phase lag, while
the feedforward controller can compensate for the errors without lags.
The NN-ILC can achieve the best tracking performance compared with
others in terms of smaller tracking errors and slighter fluctuations.

For the cases with different amplitudes and the same frequen-
118

cies, the observations are similar to the above cases. However, the
Fig. 6. Components and evolution analysis of the control voltage. (a) Control compo-
nents of the NN-ILC controller in the last iteration. (b) The evolution process of the
control voltage for NN-ILC during the iterations.

cause is different. With the increase of amplitudes, the nonlinear-
ity effects (e.g., the hysteresis) is enlarged gradually for the piezo-
driven nanopositioning system. Owing to the learning mechanism in
the ILCs, the repetitive nonlinearity in each iteration can be learned
and compensated notably to obtain a much smaller steady error.
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Fig. 7. Comparative tracking results of sinusoidal references with the five controllers at three frequencies. (a)–(c) Output displacements for 5, 10, and 20 Hz, respectively. (d)–(f)
racking errors for 5, 10, and 20 Hz, respectively. (g)–(i) Control voltages for 5, 10, and 20 Hz, respectively.
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For the differences between sinusoidal and triangular reference
racking, it can be found that the errors are bigger for triangular cases
ompared with sinusoidal cases under the same magnitude and the
ame frequency. It can be explained that triangular signals consist
f fundamental frequency and high-order harmonic frequency, while
inusoidal signals contain a single frequency. The high-order frequency
xists in the zig-zag corners and tends to deteriorate the tracking
erformance of the controller.

.4. Statistic tracking error analysis

To make a quantitative analysis, the statistic RMSEs of experimental
ases are shown in a radar figure for sinusoidal cases in Fig. 9(a) and
riangular case in Fig. 9(b).

In the radar figure, the radial line stands for the experiment case
nd the latitude line stands for the RMSE value. Hence, the inner curve
epresents smaller RMSEs than the outer curve so that the performance
s better among the controllers. It can be obtained that the proposed
N-ILC controller achieves the best tracking performances with the

mallest RMSEs and locates in the innermost among the controllers.
To be more specific, for the sinusoidal references with 20 μm cases,

the RMSEs of the NN-ILC in Case 7, Case 8, and Case 9 are 1.12,
1.53, 2.05 μm, respectively, which are reduced by 16%, 21%, and 37%
from those of PDNN, and by 19%, 13%, 20% from those of PD-ILC
respectively. For the triangular references with 20 μm cases, the RMSEs
of the NN-ILC in Case 7, Case 8, and Case 9 are 1.36, 1.95, and 2.78
μm, respectively, which are reduced by 23%, 21%, and 28% from those
of PDNN, and by 26%, 18%, 23% from those of PD-ILC respectively.
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f

To be more specific, the advantages of the proposed NN-ILC over
the traditional PD-ILC can be observed from the following two aspects.

(i) The initial tracking error in the first iteration of the proposed
NN-ILC is much smaller than that of the traditional PD-ILC. For
the 5 Hz, 10 Hz, and 20 Hz sinusoidal reference cases, the initial
tracking errors of the NN-ILC are 5.87, 6.72, and 7.6 μm, respec-
tively, while those errors of the PD-ILC are 22.5, 23.6, and 23.9
μm, respectively. This is because the feedback mechanisms are
different for the two controllers. For the NN-ILC, the nonlinearity
is compensated by the PDNN term to some extent.

(ii) The steady tracking errors in the last iteration of the two con-
trollers are also different. This can be easily observed from the
statistic RMSEs in Fig. 9 for that the learning mechanisms are dif-
ferent. For the NN-ILC, the weights of the NNs are updated along
with the iterations so that the ability to handle the nonlinearity
is superior to the PID mechanism in the PD-ILC.

.5. Comparative observations between PD-ILC and NN-ILC

To evaluate the effectiveness of the learning mechanism in the
roposed NN-ILC, comparative observations between the PD-ILC and
N-ILC can be made as shown in Fig. 10. On the one hand, for the track-

ng cases with the same frequencies, the steady tracking errors of the
N-ILC (solid lines) are consistently smaller with faster convergence

peeds than those of the PD-ILC (dashed lines). On the other hand, the
teady tracking errors are enlarged with the increase of the reference

requency for each controller.
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Fig. 8. Comparative tracking results of triangular references with the five controllers at three frequencies. (a)–(c) Output displacements for 5, 10, and 20 Hz cases. (d)–(f) Tracking
errors for 5, 10, and 20 Hz cases. (g)–(i) Control voltages for 5, 10, and 20 Hz cases.
6. Discussions

In this section, discussions are made in terms of tracking precision
and convergence speed compared with the other controllers in the
experiments.

6.1. Tracking precision

Diving the controllers into feedback and feedforward groups, it
can be seen that the inevitable lag induced by the limited bandwidth
of the feedback controller (i.e., PID, PDNN, and MPC) deteriorates
the performance of the controller. While this can be effectively com-
pensated by the learning mechanism in the feedforward controllers,
i.e., the PD-ILC and NN-ILC. For the cases with different amplitudes
and different frequencies in the experiments, the NN-ILC can achieve
the best tracking performance compared with others in terms of smaller
tracking errors and slighter fluctuations.

6.2. Convergence speed

This can be mainly discussed between PD-ILC and NN-ILC. It can
be revealed from the experimental observations that: (1) Both the two
controllers can converge into steady errors during 10 iterations for all
the cases, this demonstrates that the design is proper and the learning
mechanisms work well in the iterations. (2) The steady tracking errors
are smaller so that the learning mechanism of NN-ILC is superior to
that of the PD-ILC in terms of the nonlinearity compensation for this
system. (3) Both the two controllers are sensitive to the frequencies
120
of the reference to be tracked, this is mainly due to the same Q-filter
adopted in the two control schemes. In addition, this is a common issue
to be addressed for all the ILC schemes.

6.3. Challenges and future directions

Future improvements of the proposed NN-ILC can be made from the
following two aspects.

(i) Persistently excited condition: It is well known that the per-
sistent excitation (PE) condition is the key to guaranteeing the
parameter error converges exponentially to zero. If PE is not
satisfied, parameter convergence to the true values often cannot
be ensured in practice for many adaptive control applications. In
this work, the parameters of the controller are tuned manually to
satisfy the PE condition. Thus, in future work, improvements can
be focused on the selection of centers automatically by making
use of historical data to guarantee the PE condition.

(ii) Fixed-time convergence: In this work, the controller contains
two parts, i.e., the current feedback signal and the feedforward
signal calculated by ILC. Therefore, the stability and convergence
analysis are also divided into two parts: the boundedness of error
signals in the time domain and convergence in the iteration do-
main. The control system is demonstrated as asymptotically stable
according to the Lyapunov theorem of stability. Improvements
can also be made to handle fixed-time convergence considering

the controller saturation.
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Fig. 9. Statistic RMSEs of experimental cases with different amplitudes and different
frequencies for the five controllers. (a) Sinusoidal cases. (b) Triangular cases.

7. Conclusion

In this paper, a novel identification and control scheme named
neural network-based iterative learning control (NN-ILC) is proposed
for precision motion tracking of repetitive tasks for a piezo-driven
nanopositioning stage. To reduce the repetitive errors due to the linear
dynamics and invariable disturbance during each iteration, the iterative
learning control scheme is built. For the residual non-repetitive errors
resulting from unknown nonlinear dynamics and the parameter or
model perturbation, the online neural networks are integrated into
the ILC scheme. The convergence of the proposed scheme is demon-
strated in both the time domain and the iteration domain. The design
procedure is given to control practicers. Comprehensive experiments
are conducted based on a real-time control testbed. Results show
that the proposed NN-ILC is superior to existing controllers (i.e., the
traditional PID, the PDNN, the MPC, and the PD-ILC) in terms of the
root-mean-square errors of tracking results. Future works will seek to
handle fixed-time convergence considering the controller saturation.
In addition, the issue of flexible tracking control with ILC for varying
references are worthy to be addressed.
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Fig. 10. Iterative process of the RMSE with PD-ILC and NN-ILC under three
frequencies. (a) Sinusoidal cases. (b) Triangular cases.
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Appendix A. Convergence proof

(1) Convergence proof in time domain as in (14):

�̇�𝑗 = 𝜎𝑗𝜂�̇�𝑗 + �̃� 𝑇
𝑗 𝛤−1 ̇̃𝑊𝑗

= 𝜎𝑗
(

𝑚𝑛�̈�𝑑 − 𝑢𝑗 +𝑊 ∗𝑇𝛷 +𝐷 +
𝑚𝑛𝑘𝑝 �̇�𝑗

)

+ �̃� 𝑇
𝑗 𝛤−1 ̇̃𝑊𝑗
𝑘𝑑
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=

𝛥

R

= 𝜎𝑗
(

𝑚𝑛�̈�𝑑 − (𝜎𝑗 + �̂� 𝑇
𝑗 𝛷 + 𝑚𝑛�̈�𝑑 +

𝑚𝑛𝑘𝑝
𝑘𝑑

�̇�𝑗 + 𝑢2,𝑗 )

+ 𝑊 ∗𝑇𝛷 +𝐷 +
𝑚𝑛𝑘𝑝
𝑘𝑑

�̇�𝑗
)

+�̃� 𝑇
𝑗 𝛤−1 ̇̃𝑊𝑗

𝜎𝑗
(

−𝜎𝑗 − �̂� 𝑇
𝑗 𝛷 − 𝑢2,𝑗 +𝑊 ∗𝑇𝛷 +𝐷

)

+ �̃� 𝑇
𝑗 𝛤−1 ̇̃𝑊𝑗

= − 𝜎2𝑗 + 𝜎𝑗 (𝐷 − 𝑢2,𝑗 ) + 𝜎𝑗�̃�
𝑇
𝑗 𝛷 − �̃� 𝑇

𝑗 𝛤−1 ̇̂𝑊𝑗

= − 𝜎2𝑗 + 𝜎𝑗 (𝐷 − 𝑢2,𝑗 )
⏟⏞⏞⏟⏞⏞⏟

�̃�2,𝑗

+ 𝜎𝑗�̃�
𝑇
𝑗 𝛷 − �̃� 𝑇

𝑗 𝛤−1𝛤𝛷𝜎𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

= − 𝜎2𝑗 + 𝜎𝑗 �̃�2,𝑗

≤ − 𝜎2𝑗 +
1
2
𝜎2𝑗 +

1
2
�̃�22,𝑗

= − 1
2
𝜎2𝑗 +

1
2
�̃�22,𝑗 .
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(2) Convergence proof in iteration domain as in (24):

𝑉𝑗 = − 𝐿(2 − 𝐿)∫

𝑇

𝜏=0
𝜎2𝑗 𝑑𝜏 − 𝐿∫

𝑇

𝜏=0
2�̇� 𝑑𝜏

+ 𝐿
(

�̃� 𝑇
𝑗+1(0)𝛤

−1�̃�𝑗+1(0) − �̃�𝑗
𝑇 (0)𝛤−1�̃�𝑗 (0)

)

= − 𝐿(2 − 𝐿)∫

𝑇

𝜏=0
𝜎2𝑗 𝑑𝜏 − 𝐿𝜂𝜎2𝑗 (𝑇 )

− 𝐿
(

�̃� 𝑇
𝑗 (𝑇 )𝛤−1�̃�𝑗 (𝑇 ) − �̃� 𝑇

𝑗 (0)𝛤−1�̃�𝑗 (0)
)

+ 𝐿
(

�̃� 𝑇
𝑗+1(0)𝛤

−1�̃�𝑗+1(0) − �̃�𝑗
𝑇 (0)𝛤−1�̃�𝑗 (0)

)

= − 𝐿(2 − 𝐿)∫

𝑇

𝜏=0
𝜎2𝑗 𝑑𝜏 − 𝐿𝜂𝜎2𝑗 (𝑇 ) < 0.

(33)

Appendix B. Abbreviations

• PNS: Piezo-driven nanopositioning stage.
• AFM: Atomic force microscopy.
• ILC: Iterative learning control.
• NN-ILC: Neural network-based iterative learning control.
• AILC: Adaptive iterative learning control.
• ARILC: Adaptive robust iterative learning control.
• UAILC: Unified adaptive iterative learning control.
• MFNN: Multi-layer feedforward neural networks.
• MPC: Model predictive control.
• PE: Persistently excited.
• RBF: Radial basis function.
• PID: Proportional–integral–derivative.
• PDNN: Proportional-derivative control with neural networks.
• RMSE: Root-mean-square of error.
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