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Heterogeneous Multi-Robot Cooperation With
Asynchronous Multi-Agent Reinforcement Learning

Han Zhang ", Xiaohui Zhang

Abstract—Multi-robot systems (MRSs) are becoming increas-
ingly important in various domains. However, effective communi-
cation and coordination among multiple robots remain significant
challenges. In this letter, we introduce a novel architecture for
multi-robot decision-making and control based on multi-agent re-
inforcement learning (MARL). Our architecture can accommodate
heterogeneous robots operating asynchronously in different sce-
narios. We propose an improved practical Q-value mixing network
(Qrainbow), which builds on value-decomposition networks and
applies the multi-head attention mixer of Qatten and effective
components from Rainbow, such as double network, dueling net-
work, and prioritized experience replay. To migrate the algorithm
to MRS, we fuse macro-action into Qrainbow and make a slight
change to the process of calculating the loss function, enabling
Qrainbow to work in asynchronous scenarios. We evaluate our
architecture in both the benchmark environment for MARL and a
multi-robot environment with varying layouts. In terms of conver-
gence speed and final result, Qrainbow outperforms other state-of-
the-art MARL algorithms. Additionally, our architecture achieves
superior performance in reducing time costs and avoiding collisions
between robots in homogeneous and heterogeneous multi-robot
cooperation tasks.

Index Terms—Multi-robot systems, reinforcement learning,
heterogeneous robots, asynchronous execution.

1. INTRODUCTION

ULTI-ROBOT systems (MRSs) are groups of fixed or

mobile robots that cooperate to perform certain tasks in
adistributed manner. They have applications in various domains,
such as foraging [1], inspection [2], simultaneous localization
and mapping [3], object transportation [4], [5], and search and
rescue [6]. The employment of heterogeneous robots within
MRS is essential for accomplishing a broad spectrum of tasks
and capabilities. With their varied abilities and attributes, hetero-
geneous robots can collaborate to complete complex tasks that
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would be challenging or unattainable for a single type of robot.
Different types of robots can offset each other’s weaknesses
and constraints. Furthermore, in real-world MRS, robots are
typically given navigation points that have varying time costs
for execution. As a result, asynchrony is a significant issue that
must be addressed in algorithm design.

Multi-agent reinforcement learning (MARL) is concerned
with how multiple agents interact with the environment in order
to achieve a common goal. Research in this area began in
the last century [7]. Recently, deep neural networks have been
applied to reinforcement learning methods such as DQN [8],
DDPG [9], and PPO [10], with many works proposing exten-
sions to multi-agent settings. A common approach is central-
ized training and decentralized execution (CTDE) [11], which
addresses challenges such as non-stationarity, communication,
and coordination [12]. Classical applications of the actor-critic
algorithm on MARL include Multi-agent DDPG [11] and Multi-
agent PPO [13]. Each agent has a centralized critic that estimates
its value function, and a decentralized actor to learn its policy.
Another method, Value-Decomposition Networks (VDN) [14],
is based on Q-learning and decomposes the global Q-function
into individual Q-functions, with extensions such as QMIX [15]
and Qatten [16] allowing for inter-agent communication through
different mixing networks. MARL can accommodate hetero-
geneity in robots with varying action spaces, observation spaces,
and behavior patterns by training distinct networks with different
input and output dimensions using the same network architec-
ture.

Actions are modeled as primitive operations and executed
synchronously across agents in most current MARL methods.
While the application of Q-learning to box pushing [17] and
soccer [18] has been successful in some earlier studies, this
assumption may not be realistic for MRS, where robots often
have different action selection and completion times. A syn-
chronous algorithmic architecture, which makes MRS wait for
every robot to be ready before taking new actions, can be im-
practical and inefficient. A macro-action-based architecture [19]
is a possible solution, which allows asynchronous action selec-
tion and termination, as well as representing high-level robot
controllers naturally. The MacDec-POMDP [19], [20] adapts
the options architecture for partially observable multi-agent
domains and uses macro-actions to convert from synchronous
to asynchronous execution to accommodate the asynchrony of
MRS [21]. Several studies have investigated multi-robot tasks,
including exploration [22], cooperative manipulation [23], and
navigation [24].
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In this letter, we present a novel architecture for multi-robot
decision-making and control based on multi-agent reinforce-
ment learning. Our architecture can handle heterogeneous robots
that operate asynchronously in different scenarios. To achieve
this, we propose an enhanced MARL algorithm, which builds
on value-decomposition networks [14] and applies the multi-
head attention mixer of Qatten. Rainbow [25] is an algorithm
that combines several improvements to DQN into a single
learner, which incorporates six effective extensions to the DQN
algorithm: double Q-learning [26], prioritized experience re-
play [27], dueling networks [28], multi-step learning [29], distri-
butional reinforcement learning [30], and noisy linear layers [31]
for exploration. We evaluate these extensions in our algorithm
and select those with evident effects, resulting in our proposed al-
gorithm, Qrainbow. Additionally, Qrainbow uses macro-action
joint experience replay trajectories (Mac-JERTS) [21], to extend
the algorithm to the asynchronous setting. The main components
of our architecture are as follows. While training, we first use
fully convolutional networks to extract features from the global
state map and the local observation maps of each robot. Then,
we use these features to generate Q-value maps that indicate the
best macro-actions for each robot to execute. Finally, we use
Qrainbow to compute the global Q-value from the state feature,
observation features and Q-value maps. While deploying on
MRS, we use the CNN-based executive policy trained above
that takes the local observation as input and outputs the optimal
macro-action for each robot. The macro-actions are then sepa-
rated to several micro-actions and implemented with low-level
control.

Overall, we propose an approach that enhances the per-
formance of value-decomposition networks in terms of con-
vergence speed and final outcome. Furthermore, we extend
Q-learning-based MARL to MRS, addressing the problem of
balancing task allocation and conflict resolution among hetero-
geneous robots and the asynchronous operation of robot teams.
We conduct experiments in both the benchmark environment
for MARL and a multi-robot environment with varying layouts.
The experimental results confirm the effectiveness of our pro-
posed architecture, demonstrating that our architecture leads to
reduced time costs and fewer collisions between robots while
completing cooperative tasks.

1I. PROBLEM FORMULATION

We model our task as a MacDec-POMDP with macro-actions
and shared rewards. The execution of actions is separated into
two parts: first, a macro-action is generated by the CNN-based
executive policy; then, it is separated to several micro-actions
and implemented with low-level control. This control aims to
reach the specified location via the shortest path.

A MacDec-POMDP is defined by (D, M, ¢, T", Z, R°). D =
(I,5,A,Q,T,0,R,~) represents the Dec-POMDP definition,
where [ is a set of n agents, S is the global state space, and A
is the joint micro-action space. €2 is the joint local observation
space, and T'(s,d,s’) = P(s' | s,d) represents the state tran-
sition function when a global state s € S transitions to a new
state s after taking a joint action a. O(0,d,s') = P(0| d,s)
represents the observation probability function when a joint
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micro-action @ is taken and the global state arrives in s’ to
receive a joint local observation 6 € Q. R: S x A — R is the
reward function generating a joint reward 7, and v € [0, 1] is the
discount factor.

M represents the joint macro-action space, where each macro-
action m = (I, By, T ) consists of the initial set I,,, the
stochastic termination condition [3,,, and the low-level policy to
achieve the macro-action 7,,. ( is the joint macro-observation
space. The transformed transition probability, considering the
stochastic termination of a macro-action, is T"(s', t¢, s,m) =
P(¢,t. | s,m), where t. represents the length of time sequence
between two terminated macro-actions. Z(Z,m,s’) = P(Z|
m, s') denotes the joint macro-observation likelihood model
when a joint macro-action 2'is taken and the global state arrives
in & to receive a joint macro-observation Z € Z.

R¢ is the reward function generating a macro joint reward 7°.:
Re(F M, t,) = :ﬁxc_l ~t=tmr,, where 7 is a joint macro-
action-observation history, ¢, is the start time of joint macro-
action 1, and t,7 + t. — 1 is the end time of joint macro-action
m when any agent finishes its macro-action.

In a Dec-POMDP problem, the solution is a collection of de-
centralized policies denoted as 77 = (7", ..., n(™). Each pol-
icy () generates the subsequent micro-action agi) =@ (hgi)),
given the individual micro-action-observation history hgl) at
timestep ¢. With this definition, the value associated with a spe-
cific policy 77 is defined as V7(s) = E[>_30, v R(s¢, 1) |s, 7).
Therefore, the optimal policy beginning at state s can be for-
mally defined as 77*(s) = argmaz;V"(s). However, without
additional assumptions, the Dec-POMDP problem, as defined
above, is undecidable over continuous spaces.

In order to accommodate asynchronous scenarios, we con-
sider the problem of heterogeneous multi-robot cooperation
with asynchronous execution as a MacDec-POMDP problem,
dividing the policy into a joint high-level policy, denoted as
fi=(pM, ... u™), and a low-level policy for executing the
macro-action, denoted as 7. Each time the high-level policy j(*)
(@)

yields a macro-action m, , the corresponding low-level policy

T, generates the path to accomplish mgi)
sequence of micro-actions (a((f), e 7agl)). The value associated
with /7 is defined as V7(s) = E[Y_;2, 7' R(s, ay)|s, m, i, and

the optimal policy is i*(s) = argmazzV#(s).

, which manifests as a

III. METHODOLOGY

In this section, we design and improve an MARL algorithm
based on value-decomposition networks called Qrainbow. We
propose a architecture based on it for multi-robot decision-
making and control. This architecture, as shown in Fig. 1,
extends the synchronous multi-agent method to asynchronous
and heterogeneous multi-robot systems.

A. Qrainbow

In this section, we propose the improved Q-value decomposi-
tion network called Qrainbow. The pseudo-code of Qrainbow is
shown in Algorithm 1. It uses the same mixing network with
attention machanism as Qatten, and redesigns the executive
policy networks for each agent to accommodate the multi-robot
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Overview of our architecture for multi-robot decision-making and control based on multi-agent reinforcement learning. The architecture is composed

of two parts: the improved MARL algorithm, Qrainbow, and a CNN-based executive policy. Qrainbow takes both global state and local observations for training,
while the CNN-based executive policy takes only local observations to generate joint macro-actions. These macro-actions are then separated into micro-actions

and implemented with low-level control.

environment. Moreover, it adds some practical improvements to
the executive policy networks, which have been proven effective
on DQN, such as double network, duel network and prioritized
experience replay. To make Qrainbow work asynchronously, it
uses the method of collecting, storing and processing datas in
macro-action joint experience replay trajectories.

Qrainbow is trained end-to-end by following loss:

,3;9))2}

- =

T, M

)~T {w (Y — Qrot(

(D

where b is the batch size of transitions sampled from the replay
buffer 2, w; is the importance sampling weight to correct the
bias while using prioritized replay, y*°! is the DQN target, and
Qtot 18 @ joint action-value function.

Here, w; is defined as:

AR
YT A\N T PO)
N - pf

< ) :

= ; )
2ok PR

where N is the size of the replay buffer, p; > 0 is the priority of
transition ¢, a determines how much prioritization is used, and 3
determines how much to compensate for the non-uniform prob-
abilities. In the practice, we use the temporal-difference error to
represent the priority, and normalize weights by 1/max;w; for
stability. And y*°? is defined as:

—
T,

m’,s’;e),s’;e) ,
3)

Yl = 1% + Qi (?/7 argmazQyor (
m/

where 0~ are the parameters of a target network as in DQN.
Qrainbow uses the same technique as double DQN to replace
m/ 80 as to suppress the overestimation of action values. Due to

the asynchronous execution, macro-actions that are not termi-
nated will continue running to the next time-step and should be
considered when choosing the joint macro-action 77’. There-
fore, we record whether the macro-actions are terminated at
each time-step while collecting data and calculate y*°* as with
(3) during training. The consistency between the deterministic
greedy decentralized policies argmaz,,:Q; and the determin-
istic greedy centralized policy based on the optimal joint action-
value function argmaz,; Qo follows the rule as:
argmaz,,, Q1 (rt, mb)
argmazQyor ( : 4)
" argmaxy,n Qn(t™, m")
Here, (4, which uses attention machanism to generate the joint
action-value is defined as:

Qtot (7_—'7 T?L, S)

H n
c(s) + Z wp, Z AinQi(T,mb)
h=1 =1

> wpri nQi(rt,m"),

h.i

(&)

where c¢(s) is a constant that depends on the global state s,
wy, are weights for Q-values from different heads when us-
ing Multi-Head Attention, with H representing the number of
heads, and A; }, is a linear functional of all partial derivatives

6h§tot
9Q:,-0Q,
from neural networks based on the global state s, and A; p, o<
exp(e; (,zZ)W,;r ZWanes(s)) is retrieved based on the global
state s and agent ¢’s individual macro-observation 2t with
the individual macro-observation’s embedding vector e;(2%),
the global state’s embedding vector e;(s), the global query
transformation matrix W, ;, and the individual observation
transformation matrix Wy p,.

With regard to individual Q-value functions @); of agent i, we
separate it into the state value and the advantange:

of order h. In practice, ¢(s) and wj, are retrieved

Qi(Ti, mi) = V(Ti) + A(Ti,mi) — meanmieMiA(Ti,mi)
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Algorithm 1: Qrainbow.

Initialize the parameters of all networks 6
Set the learning rate o and the replay buffer 7 = {}
Set the learning start step stepsiqrt
step = 0, the parameters of target networks 6~ = 6
while step < step,q. do
t = 0, sop = initial state
while s; # terminal and t < episode limit do
for all agents i = 1 to N do
if agent ¢ replans macro-action then

J < agent ¢’s j-th macro-actions

s; « global state

Z; < joint observation

i+ = [25,m}_ ]

€ = epsilon-schedule(step)

. {argma:cmi_ Q(ti,mi) ~1—¢
mt = J )
J randint(1, | M*]) ~ €

r_jr < joint reward
5j41 ¢ next global state
zjt1 < next joint observation
;" < joint macro-action undone
’nfj = m; + mju
p; < maximalpriority
D+ =[5, 25,705,715, 8541, 211,17 pj]

end if
Execute micro-actions a} ~ m;
end for
t=1t+41, step = step+ 1
end while

if step >= stepsiqr¢ then
Sample prioritized batch b ~ P(b) = p§'/ >, py
wy = (N - P(b))™? /mazywy,
Calculate Qor ~ 0 with (5)
Calculate target Q;o; ~ 0~ using n1," with (3)
Calculate TD-error AQior = ¥t — Qior
Update transition priority p, < [AQ+ot]
Calculate A0) = wy(AQ¢or)?
AO =V A0)
0=0—alAd

end if

if update-interval steps have passed then
0~ =40

end if

end while

. S 1 L
= V(') + A(r',m?) — WZA(TZ,W), (6)

where M is the macro-action space of agent i, and | M?| is the
size of its macro-action space.

B. Overall Architecture

The architecture for multi-robot decision-making and con-
trol follows the CTDE rule, facilitating both global and local
decision-making to achieve optimal performance in an MRS.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 1, JANUARY 2024

During training, global state and local observations are col-
lected and processed by their respective feature extractors to
extract relevant information for decision-making. Local Q-value
maps, generated from local features, are input into the global
Q-value generator along with local and global features. The
global Q-value generator produces a global Q-value representing
the expected reward for the chosen macro joint action from
local Q-value maps. The global feature extractor, local feature
extractor, and local Q-value map generator comprise CNN layers
that process data hierarchically, extracting increasingly complex
features. This enables the extraction of high-level features for
decision-making. With the global Q-value and global reward
output from the MRS environment, networks are trained through
temporal-difference learning. This method updates network pa-
rameters based on the difference between predicted and actual
rewards. In execution, the CNN-based executive policy takes
only local observations as input and generates a macro joint
action through the action generator using the argmax of local
Q-value maps. The macro joint action represents the optimal
action for all robots based on their local observations. It is then
separated into micro-actions for each robot and implemented
with low-level control to proceed to specified locations along
the shortest path. This approach enables each robot to make
decisions based on its local observations while coordinating with
other robots.

IV. EXPERIMENTS

In this section, we evaluate the improvements of Qrainbow
in the StarCraft Multi-Agent Challenge (SMAC) environment,
a commonly used benchmark for evaluating state-of-the-art
MARL approaches. We train multiple agents with different
combinations in four scenarios to accomplish decentralized mi-
cromanagement tasks and compare the winning rate with Qatten
and QMIX during the process and at the end. We also evaluate
our architecture for multi-robot decision-making and control
in a multi-robot environment where decentralized multi-robot
teams execute foraging and search and rescue tasks. We train
heterogeneous and homogeneous multi-robot combinations in
16 scenarios and compare the average time cost and average
robot collisions with the baseline in [32].

A. Experiments in SMAC

We evaluate Qrainbow without the asynchronous component
in the SMAC environment, where agents act synchronously.
SMAC comprises StarCraft II scenarios that assess the coor-
dination and problem-solving abilities of independent agents
in complex tasks. In each scenario, two armies confront each
other with varying numbers, locations, and types of units. The
scenarios also vary in the presence of impassable terrain or high
ground. At each time step, agents receive local observations
within their field of view, including a circle with a radius equal to
the line of sight on the map around each cell. Due to line-of-sight
constraints, the environment is partially observable from each
agent’s perspective. Agents can only observe other agents if they
are within their line of sight and alive. A global state contains
information about all units on the map, which agents can access
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TABLE I
MAPS IN THE SMAC ENVIRONMENT

Name Ally Units Enemy Units
2s_vs_lsc 2 Stalkers 1 Spine Crawler
3s5z 3 Stalkers 5 Zealots
3s_vs_5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots
Sm_vs_6bm 5 Marines 6 Marines
o 2s_vs_lsc o 3s5z
® 10 ® L0
€ 0.9 € 0.9
Eos Los
207 207
w 0.6 w 0.6
Dos - 0 0.5 5
Foa — Qmix Fo.a = Qmix
%0-3 - Qatten g“-’ - Qatten
gg:i —— Qrainbow gg:: —— Qrainbow
> 0.0 > 0.0 |
< 0.2m 0.4m 0.6m 0.8m 1.0m < 03m 0.6m 09m 12m 1.5m
Steps Steps
(a) (b)
o 3s_vs_5z o 5m_vs_6m
- -
© 1.0 © 1.0
& 0.9 & 0.9
£os Los
0.7 S 07
% 0.6 w 0.6 H‘
3 0.5 - 3 05 ’
F o4 = Qmix Fo.a = Qmix
go3 —— Qatten gos3 — Qatten ¥
®© 0.2 % E 0.2 A
501 —— Qrainbow 5 o1 = Qrainbow
> 0.0 | Z 0.0
< 0.3m 0.6m 0.9m 1.2m 1.5m < 0.4m 0.8m 1.2m 1.6m 2m
Steps Steps
©) (d)
Fig. 2. Average win rate on the easy (a), (b) and hard (c), (d) scenarios.

TABLE II
AVERAGE PERFORMANCE OF THE TEST WIN RATE

Scenario Qrainbow  Qatten  QMIX
2s_vs_lsc 100 100 100
385z 93 88 91
3s_vs_5z 93 89 64
Sm_vs_6m 80 61 30

during training. The state vector includes the coordinates of
all agents relative to the map center and cell features in the
observation. The global state is also augmented by all agents’
previous actions. In all combat scenarios, the primary objective
is to maximize the win rate. SMAC provides a default reward
signal based on health damage received and inflicted by agents,
with additional rewards for eliminating enemy units or winning
battles.

Table I presents the scenarios selected in SMAC, including
two easy scenarios (2s_vs_1sc and 3s5z) and two hard scenarios
(3s_vs_5zand Sm_vs_6 m), which concludes homogeneous and
heterogeneous, symmetric and asymmetric tasks. In these four
scenarios, we implement Qrainbow, Qatten, and QMIX, and
evaluate their performance during the process and at the end. For
each algorithm in a given scenario, we conduct five experiments
and calculate the average result. The time steps of experiments
vary across different scenarios due to differences in difficulty.
Fig. 2 shows the average win rate during the process on easy
and hard scenarios, and Table II presents the average win rate at
the end. The result shows that Qrainbow, Qatten and QMIX

{_'

(a) SmallEmpty

(~

(d) LargeDoors

(b) SmallDivider

(e) LargeTunnels

[

(c) LargeEmpty

[~

(f) LargeRooms

Fig. 3. Six layouts in the multi-robot environment.

-
"
(a)
Fig. 4. Visualization of local observations (a) and the global state (b). The
observation maps represent the field of view of the robots, the communication

between them, and their intended movements through path planning. The global
state map gathers all local observations and removes any mist.

(b)

perform similarly well in easy scenarios, but Qrainbow can
converge to the optimal solution faster. In hard scenarios, QMIX
performs significantly worse because of its simple structure on
the mixer network. Qrainbow has better performance and faster
convergence than Qatten, which proves the efficiency of our
improvements.

B. Experiments in the Multi-Robot Environment

We evaluate our architecture for multi-robot decision-making
and control in the multi-robot environment proposed in [32]. As
shown in Fig. 3, it includes six layouts with different designs
of the border and obstacles. Robots move and execute specific
actions to transport objects in the environment to the red region,
which serves as a receptacle. In search and rescue scenarios,
objects are ‘marked’ by rescue robots and do not need to be
transported to the receptacle. Maps of local observations and the
global state is shown in Fig. 4. Observation maps are generated
for each robot using a simulated forward-facing RGB-D camera,
which is transformed into an overhead image. The observation
map of a robot includes: 1) the surrounding environment within
its field of view, 2) the observed states of other robots, 3), 4)
the distances of the optimal path planning from the robot to a
specific pixel location on the map and from that pixel location
to the receptacle, and 5) the robot’s intended action until its
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TABLE III
TIME COST PERFORMANCE

Robots Environment Qrainbow baseline
4L SmallEmpty 12.10 £ 0.52  15.18 £+ 0.84
SmallDivider  16.25 £+ 0.35 18.11 £+ 1.04
LargeEmpty 2442 + 0.51  26.55 £+ 0.89
LargeDoors 3998 + 045  47.01 £+ 2.96
LargeTunnels 47.46 + 0.75  55.96 + 2.57
LargeRooms 37.16 + 0.99  42.16 + 1.32
4P SmallEmpty 19.87 £ 045 2472 £ 1.62
SmallDivider ~ 32.91 + 1.45  38.75 £+ 2.98
LargeEmpty 46.43 £ 1.26  45.00 + 1.71
4R SmallEmpty 2.79 + 0.11 4.08 + 0.34
LargeEmpty 5.86 + 0.16 6.48 £+ 0.47
2L + 2P LargeEmpty 33.68 +£ 0.83  36.96 + 0.90
LargeDoors 64.41 + 1.22  70.27 £ 2.09
LargeRooms 4548 + 1.13  54.12 = 1.87
2L + 2T  LargeEmpty 28.58 + 0.83  38.20 £+ 0.92
LargeDoors 56.09 + 1.13  63.75 £ 2.22
L = lifting, P = pushing, R = rescue, T = throwing
TABLE IV
ROBOT COLLISION PERFORMANCE
Robots Environment Qrainbow baseline
4L SmallEmpty 12.10 £ 2.02 1235 + 1.79
SmallDivider 2.85 + 0.55 9.45 + 2.03
LargeEmpty 17.35 £ 1.67  26.10 = 2.97
LargeDoors 28.70 + 1.98 73.20 £+ 7.39
LargeTunnels  23.30 + 1.59  37.75 £+ 4.13
LargeRooms 23.85 + 293  42.60 £+ 2.77
4p SmallEmpty 2.10 £ 0.36 5.95 £ 0.81
SmallDivider 8.40 £ 1.24  33.90 + 4.39
LargeEmpty 530 £ 049 1135 + 1.06
4R SmallEmpty 0.90 + 0.23 2.55 £ 0.77
LargeEmpty 1.70 + 0.38 4.05 £ 1.60
2L + 2P LargeEmpty 12.50 +£ 143  19.75 + 3.51
LargeDoors 18.60 + 1.75  33.15 £+ 3.30
LargeRooms 2595 + 294 42.55 £+ 6.89
2L + 2T  LargeEmpty 11.35 £ 146  15.70 = 1.93
LargeDoors 37.20 £ 3.06 45.00 + 6.68

L = lifting, P = pushing, R = rescue, T = throwing

next decision-making. The global state map, which is the same
size and dimension as the observation maps, gathers all local
observations and removes any mist.

The action space is spatially aligned with the observation
map and varies in dimension depending on the robot type. All
robots have the ability to move, enabling them to travel to
specific locations within their environment. Lifting, throwing,
and rescue robots have an additional dimension for executing
specific actions with their end effectors, such as lifting objects,
throwing objects behind, and marking objects as ‘rescued’.
During decentralized execution, each robot generates its own
macro-action using its individual Q-network, a process that
is inherently asynchronous. During centralized training, we
track whether the macro-actions terminate at each time-step.
This data collection simulates asynchronous execution while
formulating the joint action-value. When the local Q-value map
generator processes the observation and generates a Q-value
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Fig.5. Comparison of robot collisions using our method (left) and the baseline
method (right) in LargeDoors with lifting robots (a), (b), LargeRooms with
lifting robots (c), (d), LargeEmpty with pushing robots (e), (f), and LargeEmpty
with rescue robots (g), (h). Red crosses indicate robot collisions on the map and
blue lines indicate trajectories of robots.

map, the robot and its end effector will choose and execute the
macro-action with the highest Q-value. This corresponds to the
robot moving directly to the position associated with the selected
pixel on the map. The chosen macro-action is subsequently di-
vided into several micro-actions, which are executed using low-
level control via a trajectory planning algorithm such as SPFA
or A*.

In each scenario, we evaluate a trained policy by calculating
the average performance across 20 episodes and record the mean
and standard deviation of time costs and robot collisions. Our
method is contrasted with the baseline method that employs in-
dependent Q-learning with spatial intention maps [32]. Table III
presents the comparison of time costs in 16 scenarios. The results
indicate that our method consistently meets task requirements
faster than the baseline across almost all scenarios. Notably,
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(e) ()

Fig.6. Cooperation of homogeneous robots in different scenarios with pushing
robots (a), (b) and lifting robots (c)—(f).

in complex scenarios such as LargeDoors and LargeTunnels
with lifting robots, LargeDoors and LargeRooms with lifting
and pushing robots, and LargeRooms with lifting and throwing
robots, robots trained using our method can save approximately
8% to 16% of the time. However, in the LargeEmpty sce-
nario with pushing robots, the baseline method outperforms our
method in terms of time cost. This may be due to the excessive
collision avoidance of our trained policy.

Table IV presents the comparison of robot collisions in 16
scenarios. The results indicate that our method outperforms
the baseline in avoiding robot collisions across all scenarios.
While the difference is not so significant in simple scenarios,
our method’s superiority in collision avoidance is significantly
evident in larger and more complex scenarios. The robot team
trained using our method experiences nearly half the number
of collisions. Notably, in the LargeDoors scenario with lifting
robots, our robot team encounters only 40% of the collisions
experienced by the baseline. Fig. 5 shows a visual comparison
of robot collisions using our method and the baseline method.

On the map, red crosses represent locations where robots col-
lide with each other, while blue lines indicate their trajectories.
It is evident that our trained policy performs better in both path
planning and collision avoidance, as indicated by the reduced
number of red crosses and the sparsity of trajectories. We hy-
pothesize that this difference is due to our method providing
the robot team with full access to all situations during training,

(c) (d)

()

Fig. 7. Cooperation of heterogeneous robots in different scenarios with a
combination of lifting and pushing robots (a)—(c) and a combination of lifting
and throwing robots (d), (e). Blue lines indicate trajectories of lifting robots and
green lines indicate trajectories of pushing robots or throwing robots.

without any mist. This results in more efficient and intelligent
decentralized execution. In contrast, the baseline method is
limited by its use of only partial observation during training. We
also observed that robot collisions occur more frequently near
receptacles and narrow passages. This may be due to the layouts
being insufficiently large for a four-robot team, causing them to
congregate more often. Additional trajectories of homogeneous
robot cooperation are depicted in Fig. 6. In scenarios where
obstacles are placed in the middle, robots have learned to move
around the obstacles one by one, forming a circle to avoid
collisions.

In heterogeneous multi-robot cooperation tasks, our method
achieves satisfactory results. As shown in the bottom five rows
of Tables III and IV, our trained policies provide better plans for
reducing time costs and avoiding collisions in heterogeneous
tasks. This effect is more pronounced in complex scenarios.
Fig. 7 illustrates the visual cooperation of heterogeneous robots
in various scenarios using a combination of different robot types.

The blue trajectories represent lifting robots, while the green
trajectories represent pushing robots in (a)—(c) and throwing
robots in (d)—(e). It is noteworthy that pushing robots have
learned to push objects into the receptacle using borders and
to carry multiple objects simultaneously. Lifting robots assist
by bringing objects left behind by pushing robots into the recep-
tacle. Throwing robots focus on throwing objects far from the
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receptacle, allowing lifting robots to save time by not having to
travel long distances or through doors. When objects are close
to the receptacle, throwing robots can also assist by pushing
objects to improve efficiency.

V. CONCLUSION

In this letter, we propose a novel architecture for multi-robot
decision-making and control based on multi-agent reinforce-
ment learning. We first propose an improved MARL algorithm
called Qrainbow, which incorporates numerous improvements to
the value decomposition network to accommodate asynchronous
and heterogeneous environments. These improvements have
been demonstrated to be effective in the SMAC environment.
Furthermore, we apply our architecture to homogeneous and
heterogeneous multi-robot cooperation tasks and achieve supe-
rior performance in terms of reducing time costs and avoiding
collisions between robots. During our experiments, we discover
that incorporating the global state during training facilitates
more efficient and intelligent cooperation among the robot team.

In our future work, we plan to conduct physical experiments
and address the sim-to-real problem. Due to the constraints of
the scene size, it is disappointing that we cannot entirely prevent
touches between robots and guarantee collision-free paths. Ap-
plying our approach in a larger space with more aggressive op-
timizations for obstacle avoidance, rather than merely assigning
a penalty in the reward function, may yield better performance.
Moreover, obtaining overhead images, which provide abundant
information in our experiments, may not be as straightforward in
real-world scenarios involving larger spaces. Therefore, further
research is needed on how to leverage sensor data, such as from
IMUs and LiDARs, more effectively and how to handle errors
at the transport level.
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