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For precision motion, high-bandwidth and flexible tracking are the two important issues for significant
performance improvement. Iterative learning control (ILC) is an effective feedforward control method
only for systems that operate strictly repetitively. Although projection ILC can track varying references,
the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking
commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying
(LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve
the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the
modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the
high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting
manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate
that the proposed approach can locate the high-frequency regions accurately and achieve the best
performance under varying references compared with traditional frequency-domain and projection
ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on
projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed
approach. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4998303]

I. INTRODUCTION

Many modern industrial equipment and scientific instru-
ments, such as atomic force microscopes (AFMs),1 scanning
tunneling microscopes (SPMs),2 information storage,3 and
wafer stages,4 require precision motion, especially for accu-
racy at microscale and below. Primarily, high bandwidth and
tracking flexibility are the two key issues in these systems.
Taking the nanopositioner in AFMs as an example, the tri-
angular waves with high acceleration of one axis to generate
raster scanning result in high frequency errors, which requires a
higher bandwidth of the system.5 Furthermore, due to the vari-
ance of tracking reference caused by uncertainty of the sample
surface, the system should be insensitive to reference variation.
To tackle these issues, the implementation of the controller
plays an important role on precision motion systems.6

Feedback controllers, such as resonant control (RC),7

positive position feedback (PPF) control,8 integral resonant
control (IRC),9 and H∞ control,10 have been implemented to
improve bandwidth. However, because of some practical and
fundamental algebraic restrictions in feedback, the bandwidth
with feedback alone is still confined within the first resonant
frequency.11 To achieve high bandwidth and significant per-
formance enhancement, the implementation of a feedforward
controller is a key component.12,13

Iterative learning control (ILC) has found widespread
applications, and the repetitive tracking errors as well as distur-
bances can be compensated by learning from the previous iter-
ations and updating the control signal for the next iteration.14,15

ILC can be designed by either the norm-optimal method or the
frequency-domain approach.14 For the norm-optimal method,
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the control force is determined by weighting matrices, and
the tuning process may be cumbersome. Besides, with the
increase of the sample rate and trajectory length, the large lifted
matrices make it computationally costly or infeasible.16 In con-
trast, the low-complexity frequency-domain ILC is suitable
for practical implementation. To achieve a balance between
tracking performance and robustness, a low-pass Q-filter is
generally adopted. A high cut-off frequency of the Q-filter can
improve the tracking bandwidth at the cost of deteriorating the
performance for magnifying the noise and errors caused by
model uncertainties, and vice-versa. To handle the problem,
linear time-varying (LTV) Q-filters with time-varying band-
width profile were proposed via analyzing tracking errors by
time-frequency decomposition17–19 and the locations for high
cut-off frequency were fixed and pre-designed under repetitive
reference input. However, on one hand, the change of reference
during iterations will deteriorate tracking the performance sig-
nificantly for flexible tracking. On the other hand, the fixed
LTV bandwidth profile cannot meet high bandwidth tracking
for all references because the location of high frequency errors
may vary with input trajectories. In this regard, the traditional
frequency-domain ILC with or without a LTV Q-filter has low
ability for flexible tracking.

In order to enhance the ability to tracking varying refer-
ences, in Refs. 20 and 21, different tasks were constructed by
the repeated basic tasks trained by ILC and the optimal con-
trol signal was obtained by fitting the relevant basic tasks to
realize flexible tracking. It should be noted that the tracking
references are limited by the numbers of the basic tasks. As
an alternative, norm-optimal ILC with basis function has been
proposed by parameterizing the control signal via construct-
ing finite impulse response (FIR) filters22,23 or infinite impulse
response (IIR) filters24,25 during iterations. However, these
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methods still suffer from large computation of matrices and
extra tedious iterations to obtain the parameters.25

Recently, a low-complexity frequency-domain projec-
tion ILC26 has been proposed to avoid large computation
and time-consuming tuning by projecting the error signal
into the subspace by basis functions to maintain tracking
flexibility.27,28 Although the development of projection ILC
has improved the ability of flexible tracking, the tracking
bandwidth is still limited by the fixed linear time-invariant
(LTI) Q-filter. Moreover, the time-frequency decomposition
approaches to design a LTV Q-filter in Refs. 18 and 19 may be
unpractical for the low extrapolation ability in traditional ILC
framework.

The paper is motivated by high-bandwidth and flexi-
ble tracking for precision motion in many applications and
relaxing the restrictions in traditional ILC. In this paper,
a wavelet transform-based LTV Q-filter design for pro-
jection ILC is proposed to achieve high-bandwidth and
flexible tracking simultaneously to overcome the above defi-
ciencies. Instead of removing non-repetitive errors and distur-
bances,29,30 the discrete wavelet transform (DWT) is utilized
to determine the locations of high frequency regions by cal-
culating the modulus maximum of the wavelet coefficients.
Then, the LTV Q-filter is designed after each iteration with
the advantage of avoiding the cross-terms and segmenting
signals manually in Wigner-Ville time-frequency distribution.
The projection ILC with a LTV Q-filter is also developed with
experimental verification on a piezo nanopositioner in this
paper.

The rest paper is organized as follows. In Sec. II, the
system description and relative background is presented. The
design of the proposed approach is described in Sec. III. Exper-
iments on a piezo nanopositioner and comparisons of the
results are elaborated in Sec. IV and Sec. V concludes the
paper.

II. PROBLEM FORMULATION
A. System description

In this paper, a single-input-single-output (SISO),
discrete-time and LTI system P(z) with forward time-shift
operator z is considered in Fig. 1. A two-degree freedom con-
figuration is adopted, where the feedback controller Cfb(z)
is designed to retain stability and attenuate unknown distur-
bances and nonlinearity, and the feedforward control signal
uffi is developed to compensate repetitive reference-induced
errors and disturbances. The control force ui is determined by
the sum of the feedforward control signal uffi and feedback
control signal ufbi. yi is the measured output when the antic-
ipated trajectory input is ri during iteration i with unknown
noise vi.

FIG. 1. Block diagram of the feedback-feedforward control scheme.

Considering the signal sequences with length N, the output
at time k ∈ {0, 1, . . . , N � 1} can be expressed as

yi(k)=P(z)ui(k) + vi(k). (1)

Alternatively, Eq. (1) can also be presented in lifted
domain and the dynamics of P(z) is equivalent to a N × N
dimensional lifted matrix with



yi(0)

yi(1)

...

yi(N − 1)

︸        ︷︷        ︸
yi

=



h(0) 0 ... 0

h(1) h(0) ... 0
...

...
...

...

h(N − 1) h(N − 2) ... h(0)

︸                                         ︷︷                                         ︸
P

×



ui(0)

ui(1)

...

ui(N − 1)

︸        ︷︷        ︸
ui

+



vi(0)

vi(1)

...

vi(N − 1)

︸        ︷︷        ︸
vi

,

(2)

where the coefficients h(0), h(1), . . . , h(N � 1) denote the
impulse response sequences of P(z), given by

P(z)≈ h(0) + h(1)z−1 + h(2)z−2 + · · · + h(N − 1)z−(N−1). (3)

B. Projection ILC

The control law of traditional frequency-domain ILC
generating the feedforward control signal is given by

uffi+1(k)=Q(z)(uffi(k) + L(z)ei(k)), (4)

where Q(z) is a low-pass filter to improve robustness and L(z) is
the learning filter.14 The convergence condition of the control
signal is expressed as

‖Q(z)(1 − L(z)S(z)P(z))‖∞ < 1, (5)

where S(z) = (1 + Cfb(z)P(z))�1 is the sensitive transfer func-
tion. The proof is proposed in Ref. 31 for details. According
to Fig. 1, the error at iteration i and i + 1 under vi = 0 can be
expressed, respectively, as

ei(k)= S(z)ri(k) − S(z)P(z)uffi(k), (6)

ei+1(k)= S(z)ri+1(k) − S(z)P(z)uffi+1(k). (7)

Suppose that L(z) = (S(z)P(z))�1, Q(z) = 1, and ri(k) , ri+1(k).
By substituting Eqs. (4) and (6) to Eq. (7) and rearranging
terms, it can be deduced that

ei+1(k)= S(z)(ri+1(k) − ri(k)), (8)

which reveals that traditional frequency-domain ILC is sensi-
tive to reference variation and the performance is deteriorated
significantly under flexible tracking.

To achieve flexible tracking, a projection step is adopted
to approximate uffi+1 based on the control law of traditional
frequency-domain ILC.26 Define the cost criterion as

J(θ i+1)= êi+1 − êproj
i+1 (θi+1)

2
, (9)
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where êi+1 and êproj
i+1 are the estimated errors of the next iteration

denoted as

êi+1(k)= ei(k) − S(z)P(z)(uffi+1(k) − uffi(k)), (10)

êproj
i+1 (k, θ i+1)= ei(k) − S(z)P(z)(Cff (z, θ i+1)ri(k) − uffi(k)),

(11)

with the parameterized n-order FIR filter structure

Cff (z, θ i+1)=
n∑

j=1

θ i+1[ j]z−j, (12)

here, θ i+1 is the parametric vector of the FIR filter coefficients.
In lifted domain, Eq. (12) can also be rewritten as

Cff(θ i+1)=
n∑

j=1

ψjθ i+1[ j], (13)

where ψj is the lifted matrix of z�j. Hence, Eq. (9) can be
expressed in time-domain as

J(θ i+1)= SPuffi+1 − SPψri
θ i+1


2
, (14)

with ψri
= [ψ1ri,ψ2ri, . . . ,ψnri]. By minimizing Eq. (14)

using linear least squares, the optimal coefficients are obtained
as

θ∗i+1 = (ψT
SPri

ψSPri
)−1ψT

SPri
SPuffi+1, (15)

where ψSPri
= [SPψ1ri, SPψ2ri, ..., SPψnri]. Therefore, the

feedforward control force by projection for next iteration is
calculated by

ui+1(k)=Cff (z, θ∗i+1)ri+1(k). (16)

The block scheme of projection ILC is depicted in Fig. 2.
For the design of L(z), an approximate inversion method
can be adopted to approximate P(z)/(S(z)P(z)) for fast con-
vergence. The fixed-bandwidth Q(z) is determined through
trial-and-error to meet the performance. The selection of
parameterized Cff (z) is depended on the references. In this
paper, to improve the flexibility sufficiently, a FIR filter is
constructed to project the signals for triangular waves track-
ing. Through designing L(z) and Q(z) primarily, the initial
condition of projection ILC is given by setting the paramet-
ric vector of the FIR filter coefficients to zero and the plant
is controlled by the feedback controller alone for the first
iteration.

FIG. 2. Block scheme of projection ILC.

It should be noted that although projection ILC can track
varying references, the tracking bandwidth is still limited
by the fixed cut-off frequency of Q(z).18 The contradiction
between high-bandwidth tracking and magnification of noise
and unknown disturbances exists intrinsically. The design of
Q(z) with LTV bandwidth profile for projection ILC has not
been explored deeply. The main difficulty lies in the determi-
nation of the locations of high frequency of errors for varying
references, which the methods in Refs. 18 and 19 cannot
handle.

C. Contribution of this paper

In brief, at present, the traditional frequency-domain ILC
requires a system to execute repetitive reference, and the design
of projection ILC has not taken high-bandwidth tracking into
consideration. In view of the requirements in precision motion,
the contributions of this paper are listed as below.

(1) The wavelet transform-based LTV Q-filter design method
for flexible tracking is proposed to determine the loca-
tions of high-frequency regions of errors.

(2) The framework of combining the LTV Q-filter with pro-
jection ILC is developed for high-bandwidth and flexible
tracking simultaneously.

(3) The proposed method is verified on a piezo nanoposi-
tioner under varying triangular waves.

III. WAVELET TRANSFORM-BASED TIME-VARYING
FILTER DESIGN
A. Discrete wavelet transform

To analyze the error signal of each iteration, a time-
frequency distribution is suitable for the advantages of cap-
turing both frequency and location information over Fourier
transform.32 In this paper, the discrete wavelet transform
(DWT) is adopted to locate the high frequency regions for its
less computation and practical implementation compared with
the continuous wavelet transform (CWT). Moreover, being dif-
ferent from the Wigner-Ville18 or piece-wise Wigner17 time-
frequency distribution, DWT avoids the cross-term and manual
segmentation of signals, which improves the accuracy and
practicability of the proposed method.

DWT utilizes the analysis filter banks to decompose a
signal into wavelet coefficients under various sub-band fre-
quency ranges. The diagram of a 3-level wavelet decompo-
sition is showed in Fig. 3(a). H and G represent high-pass
and low-pass analysis wavelet filters, respectively. ↓ 2 denotes
the down sampling by a factor of two. cA is named as the
approximation coefficients, which contains the low-frequency
information that can retrieve the approximation of the signal.
cD1, cD2, and cD3 are the detail coefficients which con-
tain the details of the signal in higher sub-band frequency
ranges.

The choice of the filter bank level hinges on the desired
frequency band resolution. In general, for a p-level wavelet
decomposition, the sub-band frequency range of approxima-
tion coefficients is calculated by

fcA = [0, 2−(p+1)fs], (17)
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FIG. 3. Diagram of 3-level wavelet decomposition. (a) 3-level analysis filter
banks. (b) Sub-band frequency ranges of DWT.

where fs is the sample rate in Hertz. The sub-band frequency
ranges of detail coefficients can be expressed as

fcDq = [2−(q+1)fs, 2−qfs], (18)

with q ∈ {1, . . . , p}. A sub-band frequency range of 3-level
wavelet decomposition is demonstrated in Fig. 3(b).

It should be noted that only the analysis filter banks
for wavelet decomposition are used in this paper and the
choice of wavelet function is based on the conformity of the
original signal and the reconstructed signal of DWT.29 For
the purpose of locating high-frequency errors, the detail coef-
ficients containing high-frequency information are utilized,
which is different from the method to remove non-repetitive
errors by adjusting wavelet coefficients through multiple
experiments.29,30

B. Design of bandwidth profile and filter

To obtain the LTV filter, the temporal locations of high-
frequency content are essential. In this paper, the modulus
maximum of wavelet coefficients,33 which contains the infor-
mation of peak variation and singularity, is calculated to detect
the characteristic values of errors based on DWT. For a signal
e(k), if the time th = k is the modulus maximum point for a
set of wavelet coefficients cDq, it should meet the condition
with
���cDq(th)��� ≥

���cDq(th − 1)��� and ���cDq(th)��� ≥
���cDq(th + 1)��� ,

���cDq(th)���>
���cDq(th − 1)��� or ���cDq(th)���>

���cDq(th + 1)��� .
(19)

A 4-level wavelet decomposition and corresponding detail
coefficients of a 20 Hz triangle wave tracking errors with a
2.5 kHz sample rate is showed in Fig. 4. It should be noted
that the high-frequency information exists in all the detail
coefficients and the selection of cDq should be deliberated. In
general, cD1 should not be taken into consideration because
the high frequency noise may deteriorate the calculated results.
Moreover, to make the peak of the modulus maximum to be

FIG. 4. A 4-level wavelet decomposition and corresponding detail
coefficients.

identified more clearly and remove the burr caused by noise,
the envelope of the modulus maximum is calculated by the
Hilbert transform to smooth the curve by MATLAB function
envelope. Figure 5 is the result of the smoothed modulus max-
imum curve of cD2 with frequency range 312.5 Hz–625 Hz in
Fig. 4 and t1, t2, t3, t4, and t5 are the locations of the peak
and singularity, i.e., the first five high-frequency locations.
In practice, the number of high-frequency locations l can be
determined by the references easily.

According to the location tn determined by the modulus
maximum of wavelet coefficients, the parameterized time-
varying bandwidth profile is constructed in Fig. 6. t1, t2, . . . ,
tn are the center points with width W for a high bandwidth
ωh and for other points, the bandwidth of the Q-filter is lower,

FIG. 5. Smoothed modulus maximum curve of cD2.
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FIG. 6. Parametrized time-varying bandwidth profile for a Q-filter.

donated by ωl. For simplicity, the width W, high bandwidth
ωh, and low bandwidth ωl are fixed for all high frequency
locations. Therefore, the bandwidth profile can be expressed
as

Ω(k)i =



ωh, th −W/2 ≤ k ≤ th + W/2,

ωl, others
h ∈ {1, 2, ..., l} .

(20)

The bandwidth may change very fast for particular ref-
erences. The fast switching between high and low cut-off
frequency may result in the instability of the system.17 In
this regard, the bandwidth profile is smoothed by a low-
pass zero-phase Gaussian filter with a cut-off frequency
at 150 Hz to guarantee the smooth transition between ωh

and ωl.
Based on the bandwidth profile, a zero-phase Butterworth

filter is adopted to obtain the filtered signal without phase lag.
A forward-backward filter scheme is utilized for the fast com-
putation in practice.34 After filtering the signal, the sequence
is reversed in time and filtered by a Butterworth filter. By
reversing the signal again, the original is filtered without phase
distortion. This process can be performed by the MATLAB
function filtfilt. To perform the forward-backward filter scheme
on a filter with varying bandwidth, a moving-window is also
introduced for each points to be filtered.35 Through adding
zeros before and after the input signal, applying the window
to obtain the corresponding sequence, and filtering it by cor-
responding bandwidth for every point, a zero-phase sequence
filtered by the LTV filter is obtained. It should be noted that the
length of the moving-window cannot be too short for end-effect
of the zero-phase filter.

C. Convergence analysis

Due to the LTV Q-filter, the convergence of wavelet
transform-based projection ILC is analyzed in lifted domain
and the LTV filter can be denoted as

QLTV =



hΩ(1)(0) 0 . . . 0

hΩ(2)(1) hΩ(2)(0) . . . 0
...

...
...

...

hΩ(N)(N − 1) hΩ(N)(N − 2) . . . hΩ(N)(0)



,

(21)

where hΩ(k )(k � 1), k ∈ {1, 2, . . . , N} are the impulse response
of the Butterworth filter with bandwidthΩ(k) at time instant k.

Therefore, according to Fig. 4, the control force at iteration i + 1
is given by

uff proj
i+1 =Cff ri+1. (22)

Substituting Eq. (15), it follows that

uff proj
i+1 = (ψT

SPri
ψSPri

)−1ψT
SPri

SPψri+1
uffi+1, (23)

withψri+1
= [ψ1ri+1,ψ2ri+1, . . . ,ψnri+1]. By using Eq. (23) and

the control law of traditional ILC, Eq. (22) can be rewritten as

uff proj
i+1 = (ψT

SPri
ψSPri

)−1ψT
SPri

SPψri+1
QLTV (uff proj

i + Lei).

(24)

Combining Eq. (6) yields

uff proj
i+1 = (ψT

SPri
ψSPri

)−1ψT
SPri

SPψri+1

×QLTV ((I − LSP)uff proj
i − LSri). (25)

Assuming that ri+1 = ri, the first part of Eq. (25) is
equivalent as

(ψT
SPri

ψSPri
)−1ψT

SPri
SPψri+1

=ψSPri
(ψT

SPri
ψSPri

)−1ψT
SPri

,

(26)

which is obtained because that causality of S(z)P(z) and
ψj implies that SP and (ψT

SPri
ψSPri

)−1ψT
SPri

can commute

each other.26 According to the definition of the projec-
tion matrix, ψSPri

(ψT
SPri

ψSPri
)−1ψT

SPri
is a projection matrix

with σ̄(ψSPri
(ψT

SPri
ψSPri

)−1ψT
SPri

)= 1, where σ̄ denotes the
maximum singular value of the matrix.

Therefore, combining Eqs. (25) and (26), the control
signal is convergent if

σ̄ ((ψT
SPri

ψSPri
)−1ψT

SPri
SPψri+1

QLTV (I − LSP)

= σ̄ (ψSPri
(ψT

SPri
ψSPri

)−1ψT
SPri

QLTV (I − LSP)

= σ̄(ψSPri
(ψT

SPri
ψSPri

)−1ψT
SPri

)σ̄
(
QLTV (I − LSP)

)
= σ̄(QLTV(I − LSP))< 1. (27)

It can be concluded that the convergence of the LTV
Q-filter projection ILC relies on the design of the learn-
ing filter and LTV filter, which is similar to the traditional
frequency-domain ILC. To meet the convergence condition,
the bandwidth profile should be designed subtly.

D. Design procedure

Herein, the design procedure demonstrated in Fig. 7 is
proposed for high-bandwidth and flexible tracking, which
represents the main contributions of this paper.

Before it is implemented, the feedforward controller is
initialized by setting θ0 = 0, uff proj

0 (k)= 0. The parameters ωl,
ωh, and W are determined beforehand to meet the conver-
gence condition. The learning filter L(z) can be designed by
the method in traditional frequency-domain ILC, such as the
approximate inversion approach.

It should be noted that for Step (2) in Fig. 7, DWT depends
strongly on the choice of the wavelet function. In this paper, the
optimal wavelet function is determined based on the maximum
errors between a reference error obtained by the experiment
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FIG. 7. Design procedure of the wavelet transform-based LTV filter design
for projection ILC.

without a feedforward controller and a reconstructed error sig-
nal with DWT.29 The control signal for next iteration can be
calculated according to Eqs. (22) and (23) in Step (6).

Besides, it is clear that a key assumption of the proposed
approach in Fig. 7 is that the references should be planned in
advance in order to calculate the control force of next itera-
tion. However, the assumption can be met easily in many real
applications, such as the precision motion in nanoposition-
ing,36 wafer stages,17,27 semiconductor bonding equipment,26

and a flatbed inkjet printer37 where the varying references are
known ahead before implementation.

IV. APPLICATION TO A PIEZO NANOPOSITIONER
A. Experimental setup

A three-axis nanopositioner (P-561.3CD, Physik Instru-
mente) was developed to verify the proposed method. In this
paper, only the x axis with a stoke of 100 µm was experi-
mented for comparisons. The control input voltage (0–10 V)
is produced by 16-bit digital to analog converters (DACs)
of the data acquisition card (PCI 6289, National Instrument)
and subsequently amplified via a piezo amplifier module
(E-503.00, Physik Instrumente) with a fixed gain of 10 to
provide excitation voltage (0–100 V) for the nanopositioner.
The output (0–10 V), which is normalized with respect to
0–100 µm, is read via a sensor monitor (E-509.C3A, Physik
Instrumente) and is passed to the data acquisition card (PCI
6289, National Instrument). The control system of the nanopo-
sitioning stage is developed based on Simulink Real-Time in
MATLAB/Simulink environment. The control algorithm was
designed in a Matlab/Simulink block diagram on a develop-
ment PC and executed in real-time on the target PC (CPU: Intel
Core i5 @3.3 GHz) after compiling. In this paper, the sample

FIG. 8. The experimental setup of nanopositioner (a) experimental platform
and (b) block diagram of the control system.

rate is set to 2.5 kHz. The overall experimental setup of the
system is showed in Fig. 8.

To obtain the dynamic model, a sine-sweep input volt-
age with a constant amplitude of 200 mV between 0.1 Hz
and 500 Hz was applied to the x axis. It should be noted that
the low amplitude voltage was used to excite the system to
avoid distortion from hysteresis.38 The model was identified
by the system identification toolbox in MATLAB via the func-
tion tfest. Through being discretized via a zero-order holder
(ZOH) method, the linear discrete transfer function P(z) was
obtained as

P(z)=
0.0128z4 − 0.055z3 + 0.113z2 − 0.108z + 0.0417

z5 − 4.11z4 + 7.09z3 − 6.382z2 + 2.983z − 0.5796
.

(28)

The identified and measured frequency response is plotted in
Fig. 9, which indicates that Eq. (28) captures the dynamics of
the stage well.

B. Controller implementation

To eliminate the effect of hysteresis, a high-gain feed-
back controller was also designed primarily. The notch filter
can improve the stability margin, and then a high-gain inte-
gral controller was developed to suppress the hysteresis.38

The controller Cfb(z) was obtained by discretizing via a ZOH
method as
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FIG. 9. Frequency response of the piezo nanopositioner.

Cfb(z)=
0.05239z3 − 0.03764z2 − 0.03892z + 0.05112

z3 − 2.355z2 + 2.226z − 0.871
.

(29)

Experimental results of hysteresis curves with and without
a feedback controller is displayed in Fig. 10. For a triangular
wave with 2 µm amplitude, the maximal errors are 0.1172 µm
(5.86% of the maximum magnitude) and 0.019 µm (0.95% of
the maximum magnitude), respectively, which demonstrates
that the high-gain feedback controller can suppress hysteresis
significantly. Therefore, the effect of hysteresis nonlinearity is
neglected in this paper.

For the implementation of the proposed wavelet
transform-based projection ILC, the overall design procedure
in Fig. 7 was adopted. The learning filter L(z) was designed by
a zero-phase-error tracking controller (ZPETC)39 to approx-
imate P(z)/(S(z)P(z)) in this paper and the Butterworth filter
was utilized as the Q-filter, which can be designed with differ-
ent cut-off frequencies easily by MATLAB function butter. A
fourth-order low-pass Butterworth filter was used for experi-
ments. The order of the parameterized FIR filter Cff (z) was set
to n = 10 in this paper. Besides, the wavelet function “db1” was
adopted to calculate the 4-level wavelet decomposition. For the
design of the bandwidth profile, the low bandwidth, high band-
width, and width were selected as ωl = 100 Hz, ωh = 250 Hz,

FIG. 10. Experimental results of hysteresis suppression by a high-gain
feedback controller.

FIG. 11. References for experiments.

and W = 20, respectively, which are pre-designed through sim-
ulation. The bandwidth profile can be obtained by Eq. (20)
and the control signal was calculated by projecting the filtered
zero-phase signal according to Fig. 7.

C. Results of triangular waves tracking

Triangular waves, which are usually used for raster scan-
ning in a nanopositioner, were adopted as the references.

FIG. 12. Comparisons of time-frequency decomposition for errors at 15th
iteration of projection ILC. (a) Wigner-Ville time-frequency distribution,
(b) piece-wise Wigner-Ville time-frequency distribution, and (c) modulus
maximum based on DWT.
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FIG. 13. Experiments results of RMS and MAX errors with 30 iterations.

Three references defined for experiments are depicted in
Fig. 11, where r1 for the 1th–10th iterations are 20 Hz
triangular waves with the amplitude of 2 µm, r2 for the
11th–20th iterations have a 0.01 s delay with respect to r1,
and r3 for the 21th–30th iterations are generated through
multiplying r1 by 0.75. Furthermore, four feedforward con-
trollers listed below have also been developed for compari-
sons.

(1) C1: the traditional frequency-domain ILC14 with a Q-
filter with cut-off frequency at 120 Hz.

(2) C2: the traditional frequency-domain ILC with a Q-filter
with cut-off frequency at 240 Hz.

(3) C3: the projection ILC26 with a Q-filter with cut-off
frequency at 120 Hz.

(4) C4: the projection ILC with a LTV Q-filter based on
wavelet transform proposed in this paper.

TABLE I. Statistical results of errors at iterations with changing references.

Errors Controllers RMS errors (nm) MAX errors (nm)

e11

C1 404.30 1085.00
C3 13.80 70.84
C4 12.18 51.41

e21

C1 327.90 955.30
C3 11.98 63.50
C4 11.08 45.46

1. Time-frequency analysis

In order to validate the accuracy of high-frequency loca-
tions determined by DWT, the time-frequency decomposition
of errors at the 15th iteration of projection ILC was analyzed in
Fig. 12. It is clear that the cross-terms exist at points 184, 248,
311, and 368, respectively, in Fig. 12(a), which is the main defi-
ciency of Wigner-Ville time-frequency distribution. Besides,
as the signal components increase, the additional cross-terms
become more and more in the spectrum, which may result in
confusing with the real high-frequency locations. In Ref. 17,
the piecewise clipping algorithm by cutting the signal into
pieces was used to eliminate cross-terms. Although piece-
wise Wigner-Ville time-frequency distribution can remove
the effect of cross-terms, each piece must contain only one
peak and the process to segment the signal should be done
manually, which is impractical during iterations for vary-
ing references. The smoothed modulus maximum curve of
cD2 with 4-level discrete wavelet decomposition is showed
in Fig. 12(c). Compared with Wigner-Ville time-frequency
distribution, DWT avoids the cross-terms. Moreover, it is
practical to implement DWT after each iteration automat-
ically for flexible tracking. The high-frequency regions in
Fig. 12(b) are located at th = {152, 215, 278, 342, 406} and
the locations of the modulus maximum calculated by DWT
are th = {149, 211, 273, 339, 404}, which demonstrates that
the proposed method can locate the high-frequency regions
accurately.

2. Tracking performance

Thirty iterations with varying references were performed
to demonstrate the advantage of the proposed method on high-
bandwidth and flexible tracking.

FIG. 14. Experiment results of r2 at the 20th iteration using different
controllers. (a) Tracking errors (b) zoomed-in view of the tracking errors.
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TABLE II. Statistical results of convergent errors for different references.

Reference Controllers RMS errors (nm) MAX errors (nm)

r1

C1 12.55 55.58
C3 13.70 70.84
C4 13.00 49.63

r2

C1 12.91 60.31
C3 13.04 67.63
C4 11.48 42.95

r3

C1 9.73 44.17
C3 8.98 48.26
C4 7.85 31.54

The Root-Mean-Square (RMS) errors and maximal
(MAX) errors during iterations are showed in Fig. 13. Com-
pared with C1, C2 can achieve smaller errors at first five itera-
tions, but the errors become diverged subsequently. Although
a Q-filter with higher cut-off frequency can improve the
high-bandwidth tracking performance, the convergence can-
not be guaranteed for magnifying the noise and non-repetitive
disturbances. Therefore, the bandwidth of the Q-filter should
not be too high in practice, which limits the high-bandwidth
tracking in turn. Both C3 and C4 have the ability for varying
references tracking, which can be concluded from Fig. 13 and
Table I, especially at 11th and 21th iterations. The RMS error
of C1 is 404.30 nm, while the RMS errors with C3 and C4

are 13.80 nm and 12.18 nm, respectively, at the 11th iteration,
which indicates that C3 and C4 are not sensitive to changes

FIG. 15. Calculated bandwidth profiles of different controllers. (a) Band-
width profiles at the 7th iteration, (b) bandwidth profiles at the 14th iteration,
and (c) bandwidth profiles at the 28th iteration.

between iterations. The similar conclusion can also be obtained
at the 21th iteration.

The proposed controller C4 can also handle high-
bandwidth tracking, which is presented in Fig. 14 and Table II.
Although reducing RMS errors lightly, the proposed method
can improve the tracking performance with high-frequency
components in comparison with C3. The statistical results
of MAX convergent errors confirm the conclusion. Take the
tracking results of r2 at the 20th iteration as an example.
The MAX error with C4 reduces 36.49% (from 37.36 nm to
42.95 nm) with respect to the MAX error implementing C3,

which demonstrates that the high-frequency errors were com-
pensated by the proposed LTV filter. More detailed data can
be found in Table II.

The calculated bandwidth profiles based on DWT dur-
ing iterations for different references are showed in Fig. 15.
The high-frequency locations at the 7th, 14th, and 28th itera-
tions are th = {137, 197, 258, 324, 380}, th = {152, 211, 271,
334, 390}, and th = {132, 192, 258, 322, 371}, respectively.
Therefore, the proposed method can detect the change of high-
frequency locations of errors and adjust the bandwidth profile
accordingly between iterations to achieve high-bandwidth and
flexible tracking simultaneously.

V. CONCLUSION

In this paper, a wavelet transform-based LTV Q-filter
design for projection ILC was developed considering high-
bandwidth and flexible tracking for precision motion. First,
the design method for LTV bandwidth profiles was proposed
to isolate the high-frequency locations based on the mod-
ulus maximum of wavelet detail coefficients calculated by
DWT. Then, the projection ILC with a LTV Q-filter was
constructed, which significantly improves the performance of
high-bandwidth and flexible tracking. Moreover, the wavelet
transform-based method avoids the cross-terms and segment-
ing manually for general time-frequency decomposition. To
validate the performance, the proposed method was imple-
mented on a piezo nanopositioner. Experimental results show
that the wavelet transform-based method can locate the high-
frequency regions accurately compared with Wigner-Ville
and piece-wise Wigner-Ville time-frequency distribution. For
20 Hz triangular waves varying during iterations, the proposed
controller can handle the varying references and compensate
high-frequency errors by comparing with traditional ILC and
projection ILC with a fixed-bandwidth Q-filter.

The future work will take the effect of hysteresis non-
linearity into consideration, especially for the large stroke
of the nanopositioner and extend this approach to multiple-
input-multiple-output (MIMO) systems. Besides, the method
depends on the accurate model, and a non-model based
approach40 can also be explored in the next stage.
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