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ABSTRACT
In this paper, a scheme of model reference adaptive integral resonant control (MRAIRC) is presented for adaptive precision motion control of
a piezo-actuated nanopositioning platform. The major advantage of the proposed scheme lies in the adaptivity for dynamic changes resulting
from load uncertainties. Existing standard integral resonant control (IRC) with constant controller gains is normally designed based on the
identified system model under no external load. For the proposed MRAIRC, a standard IRC is first designed using an analytical approach,
assuming that a second-order system model is obtained in advance. Afterwards, the designed closed-loop is utilized as a reference model for
systems with model uncertainties. The adaptive laws of the controller gains are determined according to the well-known MIT rules. An offline
trail-and-error operation is conducted for adaption gains’ tuning. The stability of this adaptive control system is proved through Lyapunov
stability analysis. Simulation and experimental studies demonstrate that the proposed MRAIRC is superior to the standard IRC in terms of the
tracking errors for commonly used raster scanning signals at 5, 10, and 20 Hz with load variations of the platform ranging from 0 to 1000 g.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064722

I. INTRODUCTION

Piezo-flexure nanopositioning stages are extensively utilized
to produce precision motions in many modern scientific instru-
ments or industrial equipment, such as atomic force microscopes
(AFMs),1 high-density data storage,2 optical measurement,3 wafer
stage,4 to name a few. Thanks to the merits of rapid response,
large output force, and sub-nanometer resolution of piezo actua-
tors,5–7 along with the superiorities of compact structure, wear-free,
and little requirement of maintenance of flexure hinge,8,9 nanopo-
sitioning stages can provide fine mechanical displacements with
high-precision and high-resolution. However, an inherent prob-
lem that restricts the motion speed is the lightly damped reso-
nance modes owing to the large length-to-diameter ratio of the
mechanical construction.8,10–13 For instance, during raster scanning
of AFMs, vibrations will be excited by the input triangular signals
which contain frequencies around the lightly damped resonances
of the stage.14 To push the boundaries of nanopositioning perfor-
mance in terms of speed and accuracy, damping and tracking control
algorithms have been widely investigated.

Feedforward damping controllers are designed to compen-
sate for vibrations caused by lightly damped modes, such as
inversion-based compensator,15 modeling-free iterative learning
control (ILC),16 and ILC with linear time-varying (LTV) Q-filters.7

The main drawback of feedforward approaches lies in the low
robustness in the presence of model uncertainties.10,14,17

Feedback approaches that control lightly damped vibrational
modes and improve overall tracking performance have been devel-
oped in the past.9,12,13,18–22 High-bandwidth damping controllers
are designed to tackle the issue of vibrations, such as robust H∞ con-
trol,20 µ-synthesis,21 linear-quadratic-Gaussian (LQG) regulator,22

and sliding mode control. However, the order of such controllers
relies heavily on the order of the systems,10,14 i.e., the design pro-
cess tends to be complex or inefficient for high-order systems, and
the implementation of such controllers will not be economical.

For this, negative-imaginary (NI) feedback damping controllers
are designed for vibration control of systems with flexible structures
like piezo nanopositioners.23 For a NI system, a strictly NI controller
can be designed to guarantee the internal stability of the positive-
feedback interconnection of the two systems.23,24 These controllers
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are fixed-structure, low-order, and ease of implementation, includ-
ing, but not limited to, positive position feedback (PPF),25 posi-
tive velocity and position feedback (PVPF),26 positive acceleration,
velocity and position feedback (PAVPF),27 integral force feedback
(IFF),28 passive shunt-damping (PSD),29 resonant control (RC),30

recursive delayed position feedback (RDPF),31 and integral reso-
nant control (IRC).32–34 Among the above cited studies, IRC is a
simple and low-order approach for vibration suppression of sys-
tems with multiple resonant modes while maintaining a large sta-
bility margin.34 Consequently, IRC has been widely applied for
damping a variety of flexible systems such as a piezoelectric tube,32

AFMs,35 a flexible manipulator,36 precision servomechanism,37

and so on.
The basic idea of an IRC scheme is adding a constant feed-

through term d to the controlled system G(s), so that the mod-
ified system Ĝ(s) = G(s) + d can be zero-pole interlacing.32,33

On the basis of this, an integrator C(s) = kd/s can be utilized in
a positive feedback loop to damp the vibrational modes. By tun-
ing the integral gain kd, a maximum (MAX) damping ratio for the
vibrational modes can be achieved. To determine a proper value of
the integral gain kd, designers can apply a trial-and-error approach
by plotting the root-locus directly34 or an analytical approach.33

The whole design process is based on an identified nominal sys-
tem model; however, a common system uncertainty is the change
of resonance frequency, which may lead to weak performance or
even instability of the designed IRC controller.38,39 Various fac-
tors account for the resonance changes, such as surrounding tem-
perature, humidity, atmospheric pressure, and mechanical loads.38

For this, adaptive feedback damping control is necessary for robust
vibration attenuation of nanopositioners in the presence of system
uncertainty.

The motivation of this paper is to design a model refer-
ence adaptive integral resonant controller (MRAIRC) by applying
a model reference adaptive control approach into the standard IRC
scheme to deal with resonance changes caused by mechanical load-
ing variations. First, a standard IRC is designed for an identified
nominal system with no load using the analytical approach in Ref.
33. Then, the designed closed-loop is utilized as a reference model
for systems with model uncertainty. The adaptive laws of the con-
troller gains are chosen according to the well-known MIT rules.40

The stability of this adaptive control system is demonstrated accord-
ing to a Lyapunov stability criterion. The proposed model reference
adaptive IRC is also implemented with experimental verification on
a piezo nanopositioner in this paper.

The experimental setup and system identification are described
in Sec. II. A brief introduction for a standard IRC design using
analytical approach is presented in Sec. III. Then, the proposed
model reference adaptive IRC is discussed in Sec. IV. The experi-
mental results that verify the expected improvements in position-
ing precision are presented in Sec. V. The conclusions are given in
Sec. VI.

II. EXPERIMENTAL SETUP AND SYSTEM
IDENTIFICATION
A. Experimental setup

The experimental setup utilized in this work is shown in
Fig. 1. A commercial three-axis piezoelectric nanopositioning

FIG. 1. The experimental setup of a piezo-actuated nanopositioning system: (a)
experimental platform and (b) block diagram of signal flow.

platform (model: P-561.3CD, Physik Instrumente Co., Ltd.) is
employed in this paper for the verification of the proposed control
strategy.

The signal flow of the control system is described in Fig. 1(b).
For each axis, the control input voltage in the range of 0–10 V
is produced by 16-bit digital to analog interfaces (DACs) of the
data output module in a real-time controller (model: MicroLabBox,
dSPACE Co., Ltd.). A piezo amplifier module (model: E-503.00,
Physik Instrumente Co., Ltd.) with a fixed gain of 10 amplifies the
input voltage and generates the excitation voltage between 0 and
100 V. The output of each motion axis with a stroke of 100 µm,
which is read by a piezoelectric transducer (PZT) servo submodule
(model: E-509.C3A, Physik Instrumente Co., Ltd.), is subsequently
passed to the data input module in dSPACE MicroLabBox with 16-
bit analog to digital interfaces (ADCs). The control algorithm is
designed in MATLAB®/Simulink block diagram on the host per-
sonal computer (PC) and then downloaded and executed on the
target dSPACE MicroLabBox in the real-time software environment
of dSPACE ControlDesk.

It should be noted that, in this work, only the y-axis was
used to implement the proposed controller of adaptive damping for
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single-input-single-output (SISO) systems, and the sampling fre-
quency of the system was set to 10 kHz.

B. System identification
In this section, a nominal system model under no mechani-

cal load and a set of perturbed system model under load variations
between 200 and 1000 g were identified for controller design as well
as the simulation studies before experimental implementation.

1. Nominal system
A sine-sweep input voltage with a constant amplitude of 200

mV between 0.1 Hz and 500 Hz was applied to the y-axis. A low
magnitude of input voltage was used here to avoid distortion from
hysteresis.41 The dynamic model of the nominal system with no
mechanical load is obtained using the Identification Toolbox of
MATLAB, which can be represented as

G(s) = y(s)
u(s) = 1.198 × 106

s2 + 110s + 1.673 × 106 , (1)

where u[V] is the input driving voltage and y[µm] is the output
displacement.

As depicted in Fig. 2, the identified and measured frequency
responses indicate that Eq. (1) captures the dynamics of the plat-
form well between the frequency range of 1–400 Hz. It should be
noted that the hysteresis nonlinearity is regarded as input distur-
bances, which can be alleviated by a high-gain feedback controller
in the following damping controller scheme.31 Taking a close look
at Fig. 2, it can be observed that the first resonant mode of the
system with no loaded mass occurs at the frequency of 205 Hz with

FIG. 2. Comparisons of the Bode diagram of measured results and identified
results.

a magnitude of 18.5 dB, where the damping controller is needed to
be designed to reject the unexpected vibrations.

2. Perturbed system
Using the same method as said above, a set of system identi-

fications was conducted to obtain the perturbed models under dif-
ferent loads. The identified system models are displayed in Fig. 3.
On the one hand, with the increase in mechanical loads, the posi-
tion of the first resonance shifts to the left along the frequency
axis with the decrease in the corresponding magnitude of the res-
onance peak; on the other hand, minor changes occur in the over-
all system gain at lower frequencies compared with the resonance
frequency.

To be specific, the resonance frequency shifts from 205 Hz to
98.4 Hz with the change of magnitude from 18.5 dB to −1.73 dB
under the mechanical load variations from 0 to 1000 g. It can be
seen that variations in mechanical loads have a pronounced impact
on the system dynamics at the resonance frequency. This may lead
to weakened performance or even divergence of a damping con-
troller designed based on the nominal system dynamics with no load.
Hereto, the adaptivity of damping controllers is necessary for dealing
with mechanical load variations.

Remark 1. The purpose of the perturbed system identification
is twofold. First, it is performed to reveal that the resonant frequency
shifts under load variations instead of staying still. Second, the per-
turbed models will be utilized to test the controllers’ performance
under load induced uncertainties in Sec. V. However, it does not
mean that the load variation as well as the induced uncertainty is
fixed. Actually, in some applications of microassembling or AFM

FIG. 3. Bode diagrams of the identified perturbed models under mechanical load
variations.

Rev. Sci. Instrum. 90, 045101 (2019); doi: 10.1063/1.5064722 90, 045101-3

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

scanning, the load variation has a relatively certain range rather than
a specific value. For this, the designed controller should perform
consistently in this variation range, which is the purpose of adaptive
damping controller design in this work.

III. STANDARD IRC SCHEME
A brief review of the standard IRC design using the analytical

approach is reviewed in this section. Readers may refer to Refs. 33
and 34 for details.

The dominant dynamics of a piezoelectric nanopositioning
stage with a lightly damped mode can be given as a second-order
system

G(s) = y(s)
u(s) = σ2

s2 + 2ξnωns + ω2
n

, (2)

where s is the Laplace operator, y[µm] and u[V] are the output
displacement and the input driving voltage, respectively, σ2 is the
system gain in low frequencies, and ξn and ωn are the damping coef-
ficient and the natural frequency of the plant, respectively. For a
piezoelectric nanopositioning system, ξn ≪ 1, which indicates that
the resonant mode at ωn is lightly damped.

As shown in Fig. 4, the standard IRC consists of two loops, i.e.,
an inner positive feedback loop for damping vibrations and an outer
negative loop for improving the tracking accuracy. In the damping
loop, a feedforward term d is added to produce a pair of zeros z1, z2
= ±jωz which satisfies ωn/3 < ωz < ωn. The term d can be calculated
as

d = −2
σ2

ω2
n
≜ −2dc, (3)

where dc represents the DC gain of the system in Eq. (1).
The damping loop Tdamp is defined from the output of the

tracking controller ytrack to the measured system output y as

Tdamp(s) ≜
Cdamp(s) ⋅G(s)

1 − Cdamp(s) ⋅ Ĝ(s)
, (4)

where Ĝ(s) = G(s) + d stands for the modified system by the
feedthrough term d.

The damping controller gain kd is found to maximize the
damping ratio of the damping loop. The achievable maximum
damping ratio can be obtained by

ξmax =
1
2
⎛
⎝

ωn√
ω2

n + σ2/d
− 1

⎞
⎠

, (5)

FIG. 4. Standard IRC scheme.

with the corresponding damping controller gain chosen by

kd∣ξmax =
1
∣d∣

⎛
⎝
ωn ⋅

√ ωn√
ω2

n + σ2/d

⎞
⎠

. (6)

Regarding the tracking controller, the gain is tuned so that

kt ⋅ kd < −
σ2 + d ⋅ ω2

n

d2 . (7)

Remark 2. As can be seen from Fig. 3, change of ωn is induced
by load variation, which demands a corresponding adaptivity for
kd by Eq. (6) as well as for kt by Eq. (7). However, in the deter-
mination process of a standard IRC scheme, kd and kt are fixed
once chosen. Therefore, system uncertainties caused by mechanical
load variations is not considered in the conventional design pro-
cesses either by the trial-and-error approach or by the analytical
approach. For this, the adaptivity of the standard IRC has room for
improvements.

IV. PROPOSED MRAIRC SCHEME
Section III describes the design of a standard IRC with con-

stant controller gains kt and kd. In practice, mechanical load vari-
ations cause resonance changes. To deal with this issue, the basic
idea of MRAIRC is to implement an adaptive damping controller
with parameters updated online to change the closed-loop system
dynamics.

A. MRAIRC controller design
The control structure of a MRAIRC system is shown in

Fig. 5. C̃track and C̃damp represent the designed adaptive tracking and
damping controllers with automatically adjusted gains, respectively,
which are different from Ctrack and Cdamp with constant gains in
Fig. 4. Two reference models Mdamp(s) and Mtrack(s) are chosen to
generate the desired trajectories for the inner damping loop output
and the outer tracking loop output, respectively. The control errors

FIG. 5. Block diagram of the proposed MRAIRC.
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ε1 and ε2 are defined as the deviation of the system output y from
the reference models’ outputs ym1 and ym2. The adaptive adjustment
mechanism automatically adjusts the controller parameters kd and
kt so that the closed-loop control system’s outputs follow that of
the reference models. The reference models are chosen based on the
designed damping loop and tracking loop with no mechanical loads
according to the method in Sec. III

Mdamp(s) =
Cdamp(s) ⋅G(s)

1 − Cdamp(s) ⋅ Ĝ(s)
(8)

and

Mtrack(s) =
Ctrack(s) ⋅ Cdamp(s) ⋅G(s)

1 − Cdamp(s)Ĝ(s) + Ctrack(s)Cdamp(s)G(s)
, (9)

where G(s) is the identified nominal system with no mechanical
loads, Cdamp(s), Ctrack(s), and Ĝ(s) are designed using the analyt-
ical approach in Eqs. (3), (6), and (7). In Fig. 5, both the adjust-
ment mechanisms for generating k̇d and k̇t adopt the same MIT
rule. For this, the derivation process for k̇d is discussed below for
instance.

Considering the control error

ε1 = y − ym1, (10)

a cost function is denoted as

J = 1
2
ε2

1. (11)

According to the so-called MIT rule,40 the adaptive law of kd
can be obtained as follows:

k̇d = −γd ⋅
∂J
∂kd

= −γd ⋅
∂J
∂ε1

⋅ ∂ε1

∂y
⋅ ∂y
∂kd

= −γd ⋅ ε1 ⋅
∂y
∂kd

, (12)

where γd is known as the adaption gain and the component of ∂y
∂kd

is the sensitivity derivative of the system output with respect to the
controller gain kd.

The damping loop function in Eq. (4) can be expanded as

y(s)
ytrack(s) = kd ⋅ σ2

s3 + (2ξnωn − kdd)s2 + (ω2
n

− 2ξnωnkdd)s − kd(σ2 + dω2
n)

, (13)

from which ∂y
∂kd

can be derived by

∂y
∂kd

= σ2 ⋅ (y − ytrack)
∇3 + (2ξnωn − kdd)∇2 + (ω2

n
− 2ξnωnkdd)∇− kd(σ2 + dω2

n)

, (14)

where the differential operator ∇ ≜ d/dt. To converge to the refer-
ence model (i.e., ym1 = y in Fig. 5), an approximate operation can be
made by substituting the parameters in the denominator of Eq. (14)

by the corresponding parts in the denominator of the model Mdamp
in Eq. (8). Hereto, the adaptive law of kd can be achieved as

k̇d = γd ⋅ ε1 ⋅ e1 ⋅
σ2

∇3 + am2∇2 + am1∇ + am0
, (15)

where the parameters {am0, am1, am2} are the coefficients of the terms
{s0, s1, s2} in the denominator of the reference model in Eq. (8) and
the tracking error is defined as e1 = ytrack − y.

Similarly, the adaptive law of kt can be derived as

k̇t =
γt ⋅ ε2 ⋅ e2 ⋅ kd ⋅ σ2

∇4 + an3∇3 + an2∇2 + an1∇ + an0
, (16)

where γt is the adaption gain for tracking controller, control error ε2
= y − ym2, tracking error e2 = yd − y, and the parameters {an0, an1,
an2, an3} are the coefficients of the terms {s0, s1, s2, s3} in the denom-
inator of the reference model Mtrack in Eq. (9). It should be noted
that kd should be calculated in advance so that kt can be obtained
through Eq. (16). Stability proof for the proposed MRAIRC scheme
can be found in Appendix A.

Remark 3. The adaptive laws in Eqs. (15) and (16) have two
parameters, the adaption gain γd and γt , which need to be cho-
sen by the controller designer. Generally, the two adaption gains
can be determined by a trial-and-error approach40 with the aid of
convergence diagrams of the parameters in simulations.

B. Overall design procedure
As illustrated in Fig. 5, the proposed MRAIRC consists of

two reference model loops, and each loop has an adaption gain
to be tuned for parameter’s convergence. For the convenience of
designers, the overall design procedure for the proposed MRAIRC
is summarized as follows:

Step (1): Identify the nominal system as well as the perturbed
system with load uncertainties, as shown in Figs. 2 and 3.
Step (2): Design the standard IRC based on the nominal system
model and choose the controller parameters according to Eqs.
(3), (6), and (7).
Step (3): Design MRAIRC, as in Fig. 5, using Eqs. (15) and (16).
The reference models of Mdamp and Mtrack are chosen as the
designed damping loop and tracking loop in Step 2.
Step (4): Determine the adaptation gains γd and γt through trial-
and-error to obtain a satisfied adaptation rate for parameters kd
and kt .
Step (5): Evaluate the designed controller through simulations
and experiments.
Step (6): Stop.

It can be seen from the overall design procedure that only two
parameters γd and γt need to be determined by the designer, which
simplifies the design process.

V. EVALUATIONS AND DISCUSSIONS
In this section, the effectiveness of the proposed MRAIRC

scheme is demonstrated through conducting a series of simula-
tions and experiments on the piezoelectric nanopositioning stage
mentioned in Fig. 1.
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A. Controller design results
As stated in the overall design procedure, a standard IRC needs

to be designed before the MRAIRC. In this paper, IRC is also used
for the comparative controller in simulations and experiments.

1. IRC
According to Eqs. (3), (6), and (7), a standard IRC is designed

first on the basis of an identified nominal system in Eq. (1). The
designed IRC is

d = −1.43, Cd =
1098

s
, and Ct =

258
s

. (17)

2. MRAIRC
On the basis of Eq. (17), the reference models for the damping

loop and the tracking loop are chosen as

Mdamp =
1.286 × 109

s3 + 1648s2 + 1.842 × 106s + 1.286 × 109 ,

Mtrack =
3.847 × 1011

s4 + 1648 × s3 + 1.842 × 106s2

+ 1.286 × 109s + 3.847 × 1011.

(18)

Then, the adaptation laws of controller parameters kd and kt are

k̇d =
γd ⋅ ε1 ⋅ e1 ⋅ 1.198 × 106

∇3 + 1648∇2 + 1.842 × 106∇ + 1.286 × 109 ,

k̇t =
γt ⋅ ε2 ⋅ e2 ⋅ kd ⋅ 1.198 × 106

∇4 + 1648 ×∇3 + 1.84 × 106∇2

+ 1.29 × 109∇ + 3.85 × 1011,

(19)

where the unknown gains γd and γt need to be tuned and determined
through a trial-and-error approach by plotting the adaption process
of parameters kd and kt .

Recalling Fig. 5, the controlled plant G(s) was set as a nominal
system model, and the reference models were set as Eq. (18). It was
expected that the controller parameters kd and kt should converge
to the ideal values in Eq. (17) under certain γd and γt . By tuning the
adaption gains, the designed results are shown in Fig. 6. It can be
seen that the controller parameters converge to the responding ideal
values (i.e., kd→ 1098 and kt→ 258) as the system output approaches
the steady state. Finally, the designed adaption gains are

γd = −8.4 × 109, γt = −1.2 × 109. (20)

B. Simulations
Before experiments, simulations were conducted to test the

tracking performance as well as the stability of the designed con-
troller. The results of 10 Hz raster tracking with IRC and MRAIRC
controllers are displayed together for comparisons in Fig. 7. The
controlled plant was the identified model under the 1000 g mechani-
cal load as shown in Fig. 3. It should be noted that a segment of zeros
(0.2 s) was fed into the platform in advance before the raster signals
so that the controller gains could have enough time to converge to
steady states as mentioned in Fig. 6. To compare the tracking per-
formances of the two controllers, the phase lags of the recorded sys-
tem outputs were removed as perfectly delayed tracking was better

FIG. 6. Adaption process of the MRAIRC controller parameters: (a) damping
controller gain kd and (b) tracking controller gain kt .

than imperfect timely tracking in AFM applications.31 The shifted
outputs yd(t − k∗ts) can be obtained with the delayed term k∗
calculated as

FIG. 7. Simulation results of 10 Hz raster tracking under a 1000 g load with IRC
and MRAIRC: (a) overall tracking view, (b) partial enlarged view of the red box
marked part in (a), and (c) overall tracking errors.
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k∗ = arg min
k

max
t∈[0,2T]

∣yd(t − kts) − y(t)∣, (21)

where T is denoted as the period of the input reference and ts is the
sampling time interval of the control system.

To compare the two controllers’ performance quantification-
ally, the root-mean-square error (RMS) and maximum (MAX) error
were adopted as the performance indexes in this paper for evalua-
tions denoted as

emax = max
t∈[Ta ,Tb]

(yd(t − k∗ts) − y(t)),

erms =

¿
ÁÁÁÀ 1

(Tb − Ta)/ts

Tb

∑
t=Ta

(yd(t − k∗ts) − y(t)),
(22)

where the evaluated signals last from Ta to Tb.
In Fig. 7, it can be intuitively observed that the output tra-

jectory tracks input reference more closely and steadily with the
proposed MRAIRC controller than with the traditional IRC con-
troller. To be more specific, the IRC controller produces the MAX
and RMS values of tracking errors e2 (see Fig. 5) of 0.078 and
0.047 µm, which account for 3.9% and 2.3% of the tracking range,
respectively. By contrast, the proposed MRAIRC controller gen-
erates the MAX and RMS errors of 0.048 and 0.015 µm, which
make improvements of 40% and 67% over that of the IRC con-
troller. More case studies and analysis are presented in the following
section.

C. Experiments
In the experimental cases, the IRC controller was also imple-

mented for a comparative study with the proposed MRAIRC. Con-
sidering that the first resonant frequency of the nanopositioning
stage occurs at 205 Hz as displayed in Fig. 2, a set of raster references
at 5 Hz, 10 Hz, and 20 Hz was fed into the system. With respect to the
mechanical loads, a set of load variations at 0 g, 200 g, 400 g, 800 g,

and 1000 g was chosen for testing the controllers under dynamics
uncertainties. The results are shown in Figs. 8 and 9.

Figure 8 indicates that, with increasing loaded mass, the perfor-
mance of standard IRC tends to deteriorate with a distinct increase
of tracking errors. For the proposed MRAIRC controller, the track-
ing performances under different loads are consistent with little
variations when compared with IRC, which implies that the closed-
loop control system with MRAIRC is less sensitive to load variation
induced uncertainties. Moreover, the magnitudes of tracking errors
are generally smaller with the MRAIRC controller than those with
the IRC controller. Taking a quantitative view of the results, the RMS
and MAX errors of MRAIRC under 0–1000 g range from 0.025 to
0.046 µm and from 0.059 to 0.074 µm, respectively. However, for
the IRC controller, the corresponding RMS and MAX errors range
from 0.025 to 0.080 µm and from 0.054 to 0.171 µm. It can be found
that for a 0 g load, the two controllers produce close performance.
With the increase in load uncertainties, the RMS and MAX errors of
MRAIRC increased to 0.021 and 0.015 µm, while the two indexes’
changes are 0.055 and 0.117 µm for IRC, which are 2.6 and 7.8 times
than those of MRAIRC.

The whole statistical results of RMS and MAX errors of the
experimental data are displayed in Fig. 9 for intuitive compar-
isons of IRC and MRAIRC. For the 5 Hz raster tracking, both the
controllers performed steadily versus dynamic uncertainties. When
the input raster reached 20 Hz, both the controllers resulted in
larger errors than the corresponding cases of 5 Hz raster tracking.
However, the MRAIRC’s performance was still more consistent for
dynamic uncertainties than that of IRC. The maximum MAX and
RMS errors for IRC occurred in the case of 20 Hz raster tracking
with a 1000 g load, which were 0.368 and 0.211 µm as large as 18%
and 11% of the positioning range, respectively. This was one of the
reasons why 20 Hz was the maximum chosen input frequency for
the experimental studies. The maximum MAX and RMS errors for
MRAIRC occurred similarly in the case of 20 Hz raster tracking
with a 1000 g load. They were 0.176 and 0.097 µm, which were also
much smaller than those of IRC. Herein, the experimental results

FIG. 8. Experimental results of 10 Hz
raster tracking under a 0–1000 g load
with IRC and MRAIRC [(a) and (c) are
the overall tracking view and the corre-
sponding tracking errors of IRC; (b) and
(d) are those of MRAIRC].

Rev. Sci. Instrum. 90, 045101 (2019); doi: 10.1063/1.5064722 90, 045101-7

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

FIG. 9. Tracking errors of 5 Hz, 10 Hz, and 20 Hz raster signals under a 0–1000 g
load with IRC and MRAIRC:(a) MAX errors and (b) RMS errors.

generally demonstrated that the proposed MRAIRC performed bet-
ter than the IRC for 5–20 Hz raster tracking with load variations
from 0 to 1000 g.

D. Discussions
The foregoing experimental results verified the effectiveness

and adaptivity of the reported MRAIRC scheme for precision
motion control of piezoelectric nanopositioners with load uncer-
tainties. As mentioned earlier, this paper focuses on the vibration
control issue for lightly damped modes caused by flexible hinges of
piezoelectric nanopositioners rather than the issue of hysteresis and
creep nonlinearities. For this, the references to be tracked are lim-
ited within 2 µm, which occupies 2% of the overall displacement
stroke of the motion axis. As a future work, hysteresis of nanoposi-
tioners may be considered for adaptive damping control versus load
variations.

It is also notable that concerning the proposed MRAIRC
scheme, the adaption gains γd and γt are tuned offline by a trial
and error approach to achieve ideal adaption rates. From a theoret-
ical point of view, the adaption gains can be chosen approximately
instead of optimally at the cost of slower adaption processes, which
can simplify the work of designers.

VI. CONCLUSIONS
A novel MRAIRC scheme has been reported for adaptive preci-

sion motion control for piezoelectric nanopositioners in this paper.
First, a standard IRC needs to be designed for an identified nom-
inal system with no load using the analytical approach. Then, the
designed closed-loop is utilized as a reference model for systems with
model uncertainty. The adaptive gains of the controller are chosen
according to the well-known MIT rules. The stability of this adaptive
control system is demonstrated according to a Lyapunov method.
Both simulations and experiments are conducted based on a piezo
nanopositioning platform. The results verify the effectiveness and
adaptivity of the proposed MRAIRC controller with comparisons
with the standard IRC.

Future works will seek to tackle the issues of hysteresis and
vibration simultaneously for adaptive tracking control in the appli-
cations of large range scanning for piezo nanopositioners. For this,
there is some room for the performance enhancement of the pro-
posed MRAIRC.
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APPENDIX A: STABILITY PROOF OF MRAIRC
In this section, the stability proof from input ytrack to output y

of the damping loop is conducted. A similar process can be operated
for the tracking loop from input yd to output y.

Considering the damping loop in Eq. (4) as a mass-spring-
damper system, the dynamics model can be rewritten as

...y + a2ÿ + a1ẏ + a0y = b0 ⋅ ytrack, (A1)

where {a2, a1, a0, b0} are the model coefficients. A reference model
for damping loop is chosen as Eq. (8), which can also be developed
in the form

...y m1 + am2ÿm1 + am1ẏm1 + am0ym1 = bm0 ⋅ ytrack, (A2)

where {am2, am1, am0} are consistent with that of Eq. (15) and bm0 is
the coefficient in the numerator of Eq. (8).

Subtracting Eq. (A2) from Eq. (A1) results in a control error
dynamics equation

...ε 1 + am2ε̈1 + am1ε̇1 + am0ε1 = (b0 − bm0)ytrack + (am2 − a2)ÿ
+ (am1 − a1)ẏ + (am0 − a0)y. (A3)

Choosing the error vector as E = [ε1 ε̇1 ε̈1]T , Eq. (A3) can be
restructured in a state-space form as
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Ė = AE + βBytrack + ∆, (A4)

with

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1

−am0 −am1 −am2

⎤⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦

, ∆ =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
δ

⎤⎥⎥⎥⎥⎥⎥⎦

,

where δ = (am2 − a2)ÿ + (am1 − a1)ẏ + (am0 − a0)y and β = b0 − bm0.
A Lyapunov function candidate is considered as

V = 1
2
ETPE, (A5)

where P is a symmetric positive definite matrix that satisfies the
Lyapunov linear equation

ATP + PA = −Q, (A6)

with Q given as a symmetric positive definite matrix.
In view of Eq. (A4), the time derivative of V can be expressed

as

V̇ = ETPĖ

= ETPAE + ETP(βBytrack + δ)

= 1
2
ET(ATP + PA)E + ETPB(βytrack + δ)

= −1
2
ETQE + ETPB(βytrack + δ). (A7)

Recalling Eqs. (A1) and (A2), β and δ can be obtained as

βytrack + δ = β
...y + a2ÿ + a1ẏ + a0y

b0
+ (am2 − a2)ÿ + (am1 − a1)ẏ

+ (am0 − a0)y1

= (1 − bm0

b0
)

...y + (am2 −
bm0

b0
a2)ÿ + (am1 −

bm0

b0
a1)ẏ

+ (am0 −
bm0

b0
a0)y

= bm0 ⋅ ytrack −
bm0

b0
⋅ b0 ⋅ ytrack = 0. (A8)

Hence,

V̇ = −1
2
ETQE ≤ 0. (A9)

Hereto, the stability of the damping loop from the input ytrack
to the output y is proved.
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