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A Robust Resonant Controller for High-Speed Scanning
of Nanopositioners: Design and Implementation

Jie Ling , Micky Rakotondrabe , Member, IEEE, Zhao Feng, Min Ming, and Xiaohui Xiao , Member, IEEE

Abstract— This brief presents a novel damping control scheme
for piezoactuated nanopositioning platforms with robust resonant
control (RRC). The RRC is developed to attenuate the resonant-
vibrational modes of the lightly damped dynamics of the stage in
an inner positive feedback loop. The parameters in the proposed
RRC are determined through an analytical approach. Indeed,
the controller gains constrained by both the robustness and the
damping ratio of the inner loop are tuned based on the small gain
theory. Then, a high gain integral tracking controller is applied in
the outer loop to minimize the tracking errors due to unmodeled
nonlinearity and uncertainties. To validate the effectiveness of the
proposed RRC, comparative experiments with conventional posi-
tive position feedback (PPF) and integral resonant control (IRC)
are conducted on a piezoactuated nanopositioning stage. Results
demonstrate that the proposed RRC improves the closed-loop
bandwidth from 67 Hz with PPF and 135 Hz with IRC to 176 Hz.
Moreover, better robustness against load variations with a range
of 0–1000-g loading under 0–20-Hz input raster scanning signals
are obtained by RRC compared with PPF as well as IRC.

Index Terms— High-speed scanning, piezoelectric nanoposi-
tioner, resonant control (RC), robustness.

I. INTRODUCTION

NANOPOSITIONERS have been widely used in high-
precision positioning applications, including, but not

limited to, microrobotics, microassembly, microlithography,
micromanipulation, microfabrication, and microscopy
scanning [1]–[3]. Because of the merits of fast dynamics,
large output forces, and subnanometer resolution, piezoelectric
ceramics are commonly applied to actuate these nanoposition-
ers [4]. Unfortunately, the operating bandwidth of a piezoac-
tuated nanopositioner is usually limited to 10–100 times
lower than the lowest resonant frequency because of its
lightly damped resonant-vibrational modes [5], [6].
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Different control approaches have been raised for damping
the resonant modes and high-bandwidth tracking of piezoactu-
ated nanopositioners [7]. Among them, feedback architectures
are most widely used for the superiority of robustness against
external disturbances and model uncertainties [8]. Some gen-
eral strategies are reported in the literature to minimize the
tracking errors during the processes of high-speed tasks, such
as H∞ control [9], adaptive control [10], linear quadratic
Gaussian control [11], and so on. These approaches permitted
to find the controllers that ensured robust performance when
the Q-factor of the system was low. Conversely, once the
Q-factor becomes large and the system presents a very
light damping ratio, the finding of a controller that ensures
high damping performance becomes difficult with these
approaches [9]. Hence, other specific model-based strategies
for piezonanopositioners were developed with prioritized focus
on damping control. These include: recursive-delayed position
feedback [5], robust mass damper [12], and model reference
control [13].

In addition to the above-mentioned works, negative-
imaginary control is a class of control approaches that are
applicable to deal with problems of resonant vibrations of flex-
ible structures with lightly damped modes [14], [15]. The neg-
ative imaginary theory provides a solution to increase damping
of the vibrational modes as well as to maintain the robustness
against modal uncertainty and unmodeled dynamics simultane-
ously [15]. A number of well-performing damping controllers
based on negative-imaginary theory have then been developed
to damp resonant modes but also to increase the bandwidth
of the piezonanopostioners. These efforts include: passive
shunt-damping [13], positive position feedback (PPF) [16],
positive velocity and position feedback [17], resonant con-
trol (RC) [18], integral RC (IRC) [19], [20], and so on.
All the imaginary controllers mentioned above have fixed
structures with low order and low computational complexity,
which makes them simple in the design and implementation.
Moreover, when implementing the control laws using digital
signal processing equipment, the property of fixed structure
and low order allows for the highest possible sampling fre-
quency [13]. However, apart from the IRC and the integral
force feedback (IFF) approaches, a primary drawback of the
other controllers lies in that these controllers are designed to
damp each resonant mode separately. For a system with only
one dominant mode (generally the first resonant mode), these
controllers can be applicable with low order. However, for a
system with multimode resonant frequencies, these controllers
will lead to high order, which is not practical to imple-
ment [20]. Different from IFF, which needs additional sensors,
IRC is more flexible. Therefore, among the aforementioned
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approaches, IRC is the most applicable damping approach
for both systems with unique vibrational mode and with
multiresonant modes.

In a general IRC design, a feedthrough term is added to
induce a new pair of resonant zeros at a frequency below the
first resonant mode. A simple integrator is then applied in the
positive feedback loop to damp the vibrational modes. With the
increasing controller gain, poles of the closed loop will move
away from the imaginary until the damping ratio reaches a
peak point [19], [20]. As these two parameters (feedthrough
term and controller gain) in the IRC scheme can be calculated
and determined analytically if the transfer function of the
nominal system is identified as demonstrated in [20], it is
simple and practical for users to design and implement the
controller. However, for piezoactuated nanopositioners applied
on those occasions, where the variation of loaded mass or envi-
ronmental temperature leads to significant changes in nominal
resonant frequency, the standard IRC designed on the basis
of the nominal system may result in unsatisfied performance
against uncertainty. Inspired by the efforts for standard IRC
in [19] and [20], a novel robust resonant controller (RRC)
consisting of a feedthrough term and a second-order damping
controller is proposed in this brief.

The contributions of this brief are threefold. First, a second-
order damping controller is integrated with a feedthrough term
to synthesize a novel RRC. It should be noted that the second-
order damping controller in the proposed RRC is referred from
PPF [16] for its high robustness against uncertainty. For this,
the proposed RRC structure as well as its objective is totally
different from the existing bandpass filter in IRC scheme,
which is also a second-order damper. Second, the analytical
relationship between controller parameters is derived. Then,
a tradeoff between closed-loop bandwidth and damping ratio
based on the small-gain theory is proposed for controller
design. Third, an illustrative example with a piezoactuated
nanopositioner accompanied by experiments and discussions
is presented. The robustness of the proposed RRC is studied
by simulations and experiments. Comparison with existing
PPF and IRC schemes under different load variations on the
platform is also conducted.

The rest of this brief is organized as follows. The exist-
ing standard IRC scheme is reviewed in Section II. Then,
Section III describes the design of the proposed RRC. The
experimental setup and the system identification are pre-
sented in Section IV. Verifications and discussions are given
in Section V. Finally, Section VI concludes this brief.

II. CONVENTIONAL IRC SCHEME

Assuming a piezoactuated nanopositioner with a lightly
damped mode, the dominant dynamics can be approximately
identified as a second-order system as

G(s) = σ 2

s2 + 2ξnωn · s + ω2
n

(1)

where s is the Laplace operator for continuous system, σ 2 is
the gain of this resonant mode, ξn is the damping coefficient,
and ωn is the natural frequency. In this system, ξn � 1, which

Fig. 1. Conventional IRC scheme.

indicates that the resonant mode around the frequency of ωn

is lightly damped.
Fig. 1 shows the conventional IRC scheme, where G is

the identified model, Cd is the damping controller, Ct is the
tracking controller, d is a feedthrough term, and ym , yct , and y
are the input references, tracking controller output, and closed-
loop output, respectively. Here, the inner loop from ym to y
is denoted as the damping loop with a transfer function as

Tdamp(s) � Cd (s) · G(s)

1 − Cd (s) · (G(s) + d)
. (2)

The damping controller gain kd is found to maximize the
damping ratio of the damping loop, which can be calculated
by

kd |ξmax=
1

|d|
(

ωn ·
√

ωn

ω2
n + σ 2/d

)
(3)

where ξmax is the achievable maximum damping ratio; the
feedthrough term can be chosen as d = −2σ 2/ω2

n .
For the tracking controller design, the gain should obey the

following inequality:

kt · kd < −σ 2 + d · ω2
n

d2 . (4)

It is notable that only the inner damping loop in (2) is related
to damp the resonant-vibrational mode of (1). The tracking
controller in external loop is used to minimize tracking errors,
especially in the low-frequency region.

For conventional IRC parameters’ selection and tuning,
the model uncertainty resulted from load variation or surround-
ing environmental change is considered neither in the original
design approach [19] nor in the improved analytical design
approach [20]. Therefore, the robustness against uncertainty
of the conventional IRC needs to be improved, which will be
experimentally verified in Section V.

III. PROPOSED ROBUST RESONANT CONTROL SCHEME

In this section, a new control scheme named RRC is
suggested. In addition, the design process for parameters in
the RRC is discussed analytically.

As depicted in Fig. 2, inspired by PPF control and IRC
control, we propose a robust second-order controller in the
inner damping loop to replace the simple integral damper in
the conventional IRC. In the outer loop, a commonly used
tracking controller is applied to eliminate tracking errors.
Parameters in the damping controller will be discussed through
an analytical approach, and the controller gains will be tuned
based on the small-gain theory in Sections III-A and III-B.
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Fig. 2. Proposed RRC scheme.

A. Parameter Selection

1) Feedthrough Term d: The purpose of adding a
feedthrough term is to induce a pair of zeros in the root locus
of the damping loop in (2). With the increasing controller gain,
the root locus will start from the natural poles and end at the
added resonant zeros, where a maximum damping ratio can
always be found for the resonant mode. Furthermore, for a col-
located system with multiresonant modes, e.g., a piezoelectric
cantilever beam, the adding of a feedthrough term results in
compound dynamics with interlaced zeros than poles. Then, all
the resonant modes can be damped consistently when tuning
controller gain. This is well explained and analyzed in [20].
In the RRC scheme, the feedthrough term is chosen as the
same with IRC as d = −2σ 2/ω2

n .
2) ωd and ξd: Considering the damping loop in (2) by

replacing the damping controller with a second-order damper
shown in Fig. 2, there are four poles with two from the
natural system and the other two resulted from the damping
controller, and two zeros induced from the added feedthrough
term. For this, the root locus of the damping loop will have
four trajectories, among which four trajectories start from the
four poles, while two trajectories end at the induced zeros
and two trajectories end at infinity. Fig. 3 displays the three
possible cases of the root locus of the damping loop with
different values of the two parameters (i.e., ωd and ξd ). The
three states are named “Ordered”, “Critical,” and “Chaotic”,
respectively. To damp the multiresonant modes of a collocated
system simultaneously and consistently, the root locus of the
damping loop needs to follow the ordered trajectories as shown
in Fig. 3(a), which means that all the resonant modes start
from the natural poles and end at the induced zeros, while the
two roots induced by the damping controller move to infinite
points.

For this, the proper range for ωd and ξd needs to be found
so that the resulted root locus of the damping loop would
follow the ordered trajectories. Considering the critical state
shown in Fig. 3(b), there is a pair of complex breakaway points
in this state, which means that the characteristic equation
of the damping loop has a pair of complex identical roots.
Herein, we can obtain a relationship between ωd and ξd

through solving the characteristic equation of the damping
loop 1 − Gd · (G + d) = 0. Applying the RRC controller
shown in Fig. 2 into this equation, we have

1 − d
(
s2 + 2ξnωns + ω2

z

)
s2 + 2ξnωns + ω2

n
· kd

s2 + 2ξdωds + ω2
d

= 0 (5)

where ω2
z = σ 2/d + ω2

n represents the induced zeros by the
feedthrough term. Rearranging (5), the characteristic equation

Fig. 3. Root locus of the damping loop with RRC. (a) Trajectory of
resonant mode starts from the natural poles and ends at induced zeros by
the feedthrough term (Ordered state). (b) Trajectories have a pair of complex
breakaway points (Critical state). (c) Trajectories start from the natural poles
and do not end on induced zeros (Chaotic state).

will be of the following form as:

P(s) = s4 + K3 · s3 + K2 · s2 + K1 · s + K0 (6)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K3 = 2ξdωd + 2ξnωn

K2 = ω2
d + 2ξdωd · 2ξnωn + ω2

n − d · kd

K1 = ω2
d · 2ξnωn + 2ξdωd · ω2

n − d · kd · 2ξnωn

K0 = ω2
d · ω2

n − d · kd · ω2
z .

For the damped system with a pair of complex identical
roots in the left half-plane as Fig. 3(b) describes, its charac-
teristic equation should have the following form as:

P∗(s) = (s2 + α · s + β)
2

= s4 + 2α · s3 + (α2 + 2β)s2 + 2αβ · +β2 (7)

where α < 0 and � = α2 − 4β < 0 for a repeated pair of
complex roots.

Let P(s) = P∗(s) and solve the equation set, an analytical
relationship between the parameters in damping controller can
be obtained as

F1(kd, ξd , ωd )

= ω2
d + 2ξdωd · 2ξnωn + ω2

n − (ξdωd + ξnωn)2

−(
ω2

d · 2ξnωn + ω2
n · 2ξdωd

− d · kd · 2ξnωn
)
/(ξdωd + ξnωn) − d · kd = 0 (8)

and

F2(kd , ξd , ωd )

= ω2
d · ω2

n − d · kd · ω2
z

−(
ω2

d · 2ξnωn + ω2
n · 2ξdωd − d · kd · 2ξnωn

)2

/(ξdωd + ξnωn)2 = 0. (9)

Two implicit functions F1 and F2 with respect to kd , ωd ,
and ξd can be obtained when solving for breakaway points
occurred in the critical state shown in Fig. 3(b). By solv-
ing (8) and (9) for a further step, we can obtain the analytical
relationship between ωd and ξd , which will lead the system
to critical state as shown in Fig. 3(b).

Remark 1: To determine a specific set of the two parameters
of ωd and ξd , a tradeoff between the bandwidth and the
achievable maximum damping ratio of the damping loop
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Fig. 4. RRC with multiplicative uncertainty. (a) Closed-loop scheme.
(b) Augmented system.

should be made. For this, a discussion is presented in the case
studies in Section V.

B. Damping Controller Gain Tuning

In a conventional IRC design, the controller gain is tuned
to achieve the maximum damping ratio as stated before.
However, the system uncertainty is not taken into consideration
in the design process. In the proposed RRC design, we propose
to determine the damping controller gain considering two
conditions, that is: 1) damping condition as described in (3)
and 2) robustness condition based on the small-gain theory.

Theorem 1: The closed-loop system under RRC control
with multiplicative uncertainty shown in Fig. 4(a) is internally
stable for all uncertainty ��m(s)� ≤ 1 if and only if∥∥∥∥ Cd · G

1 − Cd · (G + d)
· W�

∥∥∥∥ < 1 (10)

where W� is the weighting function of the uncertainty, which
is designed to surpass the measured uncertainty as

��m(s) · W�� > ��(s)� (11)

for all frequencies. �(s) is the multiplicative uncertainty that
can be obtained by measuring the perturbed system under
different loaded masses and calculated by (13).

Remark 2: By performing an upper linear fractional trans-
formation and converting the system in Fig. 4(a) into an
augmented format as shown in Fig. 4(b), then Theorem 1 can
be derived based on the small-gain theory as described
in [21, Ch. 9].

Hereto, the damping controller gain in the proposed RRC
can be determined based on the damping condition as well as
the robustness condition in (10).

C. Tracking Controller Gain Tuning

As displayed in Fig. 2, the inner damping loop can only
alleviate the resonant vibrations caused by the lightly damped
modes. A tracking controller in the outer loop needs to be
utilized to deal with the hysteresis and the creep nonlinearity
to decrease the tracking errors. Considering the ease of cal-
culation and implementation, a high-gain feedback integral is
adopted in the outer loop of the proposed RRC, which is also
a widely used approach in [5], [13], [17], [19], and [20].

With respect to the tracking controller gain tuning, a graph-
ical method is introduced in [5], for the determination of

Fig. 5. Experimental setup of the piezoactuated nanopositioning stage.
(a) Experimental platform. (b) Block diagram of the signal flow.

Fig. 6. Multiplicative system uncertainty with load variations and the
designed weighting function.

the proportional–integral control gains. In the RRC design,
the maximum allowable overshoot and the settling time of the
step response of the closed-loop system are given first. The
tracking controller gain is tuned by the trial-and-error method
as well as the graphical method to check that the simulated
responses agree with the desired performance.

D. Overall Procedure

The overall procedure for the RRC design can be summa-
rized in the following steps.

Step 1: Perform a set of system identifications with a set of
load variations (including no loading as the nominal system)
and obtain a transfer function model for the nominal system as
expressed in (1) as well as a set of systems with perturbation
(see Figs. 5 and 6).

Step 2: Calculate the feed-through term d according to (3)
to add a pair of resonant zeros followed by the natural poles
of the controlled plant as shown in Fig. 3.

Step 3: Plot the state figure for the damping loop based
on (8) and (9) to find the proper range for ωd and ξd to lead
the system to an ordered state as displayed in Fig. 3(a). The
state figure may refer to Fig. 7 in Section V. Determine a
candidate range of ωd and ξd based on achieved bandwidth of
the damping loop.

Step 4: Plot the figure of achievable maximum damping
ratio versus ωd and ξd (see Fig. 8). The solid boundary stands
for the values of ωd and ξd to lead the system to a critical
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Fig. 7. Range of ωd and ξd for three states in Fig. 3 of the piezoactuated
nanopositioner with RRC controller.

state. Make a tradeoff between the achievable bandwidth and
maximum damping ratio and determine a set of ωd and ξd .

Step 5: Calculate the multiplicative uncertainty G� and
design the weighting function W�. Tune the damping con-
troller gain kd to satisfy the damping condition and the
robustness condition in (10) (see Fig. 9).

Step 6: Tune the tracking controller gain kt based on the
trial-and-error method to achieve the desired step response
performances.

IV. EXPERIMENTAL SETUP AND SYSTEM IDENTIFICATION

A. Experimental Setup

The designed controller is implemented on a three-axis
piezoactuated nanopositioning stage (model P-561.3CD from
Physik Instrumente) as shown in Fig. 5. The terminal motion
produced by the actuator is within 0–100 μm for each indi-
vidual axis. The control input voltage (0–10 V) for each axis
is produced by 16-bit digital-to-analog interfaces of the data
output module in dSPACE MicroLabBox and subsequently
amplified via a piezoamplifier module (model E-503.00 from
Physik Instrumente) with a fixed gain of 10 to provide
excitation voltage (0–100 V). The displacement of the output
is measured via a piezoelectric transducer servo submodule
(model E-509.C3A from Physik Instrumente) and is passed
to the data input module in dSPACE MicroLabBox with 16-
bit analog-to-digital interfaces. Details about the signal flow
are shown in Fig. 5(b). The control algorithm is designed
in MATLAB/Simulink block diagram on the host PC and
then downloaded and executed on the target dSPACE Micro-
LabBox in the real-time software environment of dSPACE
ControlDesk.

In this brief, only the y-axis was used to implement the
proposed controller and the sampling frequency of the system
was set to 10 kHz.

B. System Identification

1) Nominal Model: A linear model of the y-axis was
obtained by applying a step voltage at 10 V into the elec-
trode and recording the corresponding sensor output. Then,
the system identification toolbox in MATLAB was used to
identify the dynamic model. The obtained continuous transfer
function of the dominant dynamics is displayed in (12) with
the frequency response described in Fig. 10(a). The first

Fig. 8. Achievable maximum damping ratio for the resonant mode versus
each set of ωd and ξd .

Fig. 9. Determination of damping controller gain kd based on the damping
condition and the robustness condition.

resonant mode of the system with no load occurs at the
frequency of 205 Hz with a magnitude of 18.5 dB, where the
damping controller is to be designed to reject the unexpected
vibrations

G(s) = y(s)

u(s)
= 1.198 × 106

s2 + 110s + 1.673 × 106 (12)

where y[μm] is the output displacement and u[V ] is the
driving voltage.

2) Perturbed Model: A set of system identifications was
conducted to obtain perturbed models under different loaded
masses. Identified system models with load variations are
displayed in Fig. 10(a). Corresponding multiplicative uncer-
tainties, shown in Fig. 6, are calculated by

�(s) = G p(s)/G(s) − 1 (13)

where G(s) is the identified nominal model in (12), and G p(s)
is the perturbed model with load variations. The weighting
function, which is also presented in Fig. 6, is designed as

W�(s) = s + 23.15

0.6683s + 691.2
. (14)

V. EVALUATIONS AND DISCUSSIONS

In this section, the conventional IRC, PPF, and the proposed
RRC are designed on the basis of identified dynamics of the
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Fig. 10. Comparative results of open loops and closed loops with PPF, IRC,
and RRC. (a) System bode diagrams at 0, 600, and 1000 g. (b) Simulation
results of step responses with RRC from 0–1000 g.

piezoactuated nanopositioner. Extensive comparisons between
these controllers are conducted through tracking experiments,
where 5-, 10-, and 20-Hz triangular scanning signals are used
as inputs. In addition, the robustness against load variations
is verified under a set of loaded masses including 200-, 400-,
600-, 800-, and 1000-g mass.

A. PPF, IRC, and RRC Design

To make fair comparisons, the rise time and the overshoot
of step responses of the closed-loop systems are set less than
8 ms and 3% for each control scheme. The damping controller
in each scheme is chosen to achieve the maximum damping
ratio for the resonant mode, while in RRC design, an additional
robustness condition is considered. The tracking controller in
each scheme is designed to obtain the desired performance
mentioned above.

1) PPF Controller: Utilizing the pole placement approach
introduced in [16], designed poles are chosen through shifting
1000 units of poles in (12) along with the real axis in the
complex plane. The PPF controller is obtained as

CPPF
d = 4.187 × 106

s2 + 6519s + 7.628 × 106 , CPPF
t = 250

s
.

TABLE I

FREQUENCY- AND TIME-DOMAIN INDEXES

2) IRC Controller: According to (3) and (4), the conven-
tional IRC is designed as

d = −1.43, C IRC
d = 1098

s
, C IRC

t = 258

s
.

3) RRC Controller: In the proposed RRC, the first step is
to determine the proper range of ωd and ξd such that the
root locus of the damping loop can follow the trajectory like
an ordered state in Fig. 3(a). As the first resonance of the
plant occurs at 205 Hz, we can assign a range for ωd between
40 and 220 Hz, and the corresponding values of ξd can be
obtained by (8) and (9). As depicted in Fig. 8, the black solid
line shows results obtained by (8) and (9), which will lead the
damping loop to the critical state. Parameters in the upper area
are the proper range for ωd and ξd in RRC. To determine the
specific set of parameters, the achievable maximum damping
ratio versus parameters are plotted in Fig. 8. It is found that
the maximum achievable ξmax occurs when ωd and ξd are
chosen in the critical state line in Fig. 7, which is the same as
the blue dotted line in Fig. 8. Therefore, we should choose ωd

and ξd in the upper right neighborhood of the critical state line
in Fig. 7. A tradeoff between the closed-loop bandwidth and
the damping ratio should be made according to the tendency
of the critical state line. In this experiment, designed values
are ωd = 163 Hz and ξd = 0.9, and the achievable maximum
damping ratio is ξmax = 0.3451, which is superior to the IRC
case as shown in Table I.

According to damping and robustness conditions, the damp-
ing controller gain can be determined as kd = 1.045 × 106,
as shown in Fig. 9. Hereto, the designed RRC is

CRRC
d = 1.045 × 106

s2 + 1840s + 1.044 × 106 , CRRC
t = 570

s
.

B. Simulation Results

Before conducting experiments, comparisons of closed-
loop bandwidth, damping ratio, as well as robustness among
three controllers (i.e., PPF, IRC, and RRC) were performed
through simulations based on identified nominal and perturbed
models. Some performance indexes in both time and frequency
domains of closed-loop systems with three controllers are
shown in Table I. It can be found that all three controllers sat-
isfy step response requirements set in Section V-A. In addition,
all margin gains are larger than 2 dB and margin phases are
larger than 30◦, which implies that three designed controllers
also meet basic margin conditions. Nevertheless, among these
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Fig. 11. Experimental results of outputs and tracking errors of raster
references. (a)–(b) 5 Hz. (c)–(d) 10 Hz. (e)–(f) 20 Hz.

three controllers, the proposed RRC can obtain the maximum
bandwidth of 176 Hz as well as the maximum damping ratio
of 0.345 for the resonant mode.

In order to compare the robustness performance under
load variations, system bode diagrams and step responses are
presented in Fig. 10. It can be clearly seen in Fig. 10(a)
that the proposed RRC can guarantee more smooth frequency
responses around the changed resonances due to load vari-
ations compared with IRC as well as PPF. Regarding step
responses under different loads, it can be observed from
Fig. 10(b) that the RRC can perform steadily and consistently
with load uncertainties within 1000 g.

C. Experimental Results of Raster Tracking

To evaluate the tracking performance of three controllers,
a set of raster scanning signals at 5, 10, and 20 Hz are fed
into the platform. To evaluate and compare the performance
directly using these three controllers, the feedback delay
is identified and removed before quantitative analysis. For
detailed descriptions about the processing of the delay, readers
can refer to (2) in [23].

Tracking results of 0-g load under PPF, IRC, and RRC
are recorded in Fig. 11 and Table II. It can be seen that for
0-g load, all three controllers can track raster signals well at
5 and 10 Hz with the root-mean-square error (RMSE) value
less than 0.015 μm, which accounts for less than 1% of the
positioning stroke of 2 μm. For the 20-Hz case, the RMSE
value with PPF and IRC is 0.051 and 0.038 μm, whereas
the RMSE with RRC is 0.019 μm, which makes 63% and
50% improvements over PPF and IRC, respectively. The main
reason for this is the achieved closed-loop bandwidth of RRC

TABLE II

PERFORMANCE MEASURE

Fig. 12. Tracking results of 20-Hz triangular scanning signals for the system
loaded with 1000 g mass.

control is 176 HZ, which is the maximum one among the
controller set as presented in Table I.

D. Experimental Results of Robustness Test

As displayed in Fig. 10(a), the worst situation with load
variations is 1000 g, where the first resonance is shifted
from 205 to 139 Hz. Therefore, in this section, the 20-Hz
triangular scanning signals are fed into the closed-loop system
under PPF, IRC, and RRC control to test the robustness of
three controllers. Simulated bode diagrams of the closed-loop
systems are displayed in Fig. 10(a), and the time-domain
tracking results are depicted in Fig. 12. In Fig. 10(a), it can be
found that the closed-loop system with RRC provides a flatter
response compared with PPF and IRC, which is also proved
by the tracking error results in Fig. 12. To be more specific,
RMSEs of PPF and IRC are 0.128 and 0.099 μm, while the
RMSE with RRC is only 0.033 μm (74% less than PPF and
67% less than IRC).

E. Discussions

More specific comparisons of tracking performance among
PPF, IRC, and RRC are recorded in Table II. Taking a closer
look into the time-domain RMSE, it can be seen that the
proposed RRC performs better than PPF and IRC against load
variations with a range of 0–1000 g in the experiments. In the
aforementioned experiments, triangular signals with a maxi-
mum frequency of 20 Hz are utilized, which is approximately
ten times lower than the first resonance of the open-loop
dynamics. However, it is relatively a high working bandwidth
for triangular signals, because they contain all odd harmonics
of the basic frequency [7], [16]–[18], which are several times
higher than 20 Hz in this case.
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It should be noted that both IRC and RRC can deal
with vibrational damping of collocated systems that contain
multiple dominating resonant modes with only one controller,
whereas each resonant mode needs to be damped by an indi-
vidual damping controller when utilizing PPF approach [19].
Moreover, the PPF scheme always needs a nonlinear search
for parameters’ tuning, which is more complicated than the
analytical approach used in IRC and RRC designs. It is also
noteworthy that the proposed RRC scheme can provide a
better performance of robustness than conventional IRC, but
the design process is a bit more complex as there are more
parameters in the controller. Herein, for a system with already
known load variations, such as applications in microassem-
bling, cell manipulation, and scanning probe microscope scan-
ning, where consistent positioning performance under different
loads are demanded, the proposed RRC can be considered as
an alternative option for better robustness.

VI. CONCLUSION

This brief presents a new RRC scheme for damping control
of piezoactuated nanopositioners. The RRC is applied in
the inner damping loop to damp resonant-vibrational modes.
In the outer loop, a high-gain integral tracking controller is
utilized to decrease tracking errors. Parameters of the damping
loop are determined through an analytical approach, and
controller gains are tuned via a graphic method. The overall
design procedure is given for designers. Finally, the developed
RRC is applied to a piezoactuated nanopositioner to damp
the resonant mode and to compare with the conventional
PPF and IRC schemes by tracking raster scanning signals
at different frequencies under load variations. Experimental
results demonstrate the superiority of the proposed RRC
controller.
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