
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024 7504812

CCMD-SLAM: Communication-Efficient
Centralized Multirobot Dense SLAM

With Real-Time Point Cloud
Maintenance

Chenle Zuo , Zhao Feng , and Xiaohui Xiao , Member, IEEE

Abstract— This article presents a communication-efficient cen-
tralized multirobot dense simultaneous localization and mapping
(CCMD-SLAM) system with real-time point cloud maintenance,
to address the limitations of data transmission and real-time
creation and updating of dense maps in multirobot SLAM. This
method solves the problem of high bandwidth consumption for
information transmission in multirobot SLAM by preprocessing
and compressing the transmitted data and filtering the red
green blue-depth (RGB-D) information using the co-viewing
degree of keyframes. The proposed method uses loop closure
detection to integrate information from multiple robots and
establish a global point cloud. In addition, a keyframe and
point cloud storage mechanism is designed to facilitate real-time
maintenance of global point cloud data. Through comprehensive
evaluations using standard datasets and real-world experiments,
CCMD-SLAM significantly alleviates data transmission pres-
sures, enables flexible global point cloud management across
multiple robots, and effectively achieves dense mapping for
multirobot systems.

Index Terms— Dense mapping, multirobot, red green blue-
depth (RGB-D), simultaneous localization and mapping (SLAM).

I. INTRODUCTION

DENSE mapping is increasingly popular in various fields,
such as environmental mapping, search and rescue,

and augmented/virtual reality [1], [2]. Multirobot systems
can efficiently accomplish the large-scale dense mapping of
scenes [3], [4]. However, multirobot dense mapping is a
challenging task. Size and weight limitations make it chal-
lenging for conventional perception robots, such as unmanned
aerial vehicles (UAVs), to use powerful processors and storage
devices for distributed real-time dense reconstruction and
storage [5], [6]. In contrast, a centralized method can address
these limitations by centralizing data processing and storage
on a central server. However, the large volume of red green
blue-depth (RGB-D) data introduces significant transmission
burdens, and the scalability and performance of the system are
constrained by network bandwidth. On the other hand, while

Manuscript received 21 August 2023; revised 15 March 2024;
accepted 5 April 2024. Date of publication 14 May 2024; date of current
version 29 May 2024. This work was supported in part by the National Key
Research and Development Program of China under Grant 2018YFB2100903.
The Associate Editor coordinating the review process was Dr. Jochen Lang.
(Corresponding authors: Zhao Feng; Xiaohui Xiao.)

The authors are with the School of Power and Mechanical Engineering,
Wuhan University, Wuhan 430072, China (e-mail: zcl0008@whu.edu.cn;
fengzhao@whu.edu.cn; xhxiao@whu.edu.cn).

Digital Object Identifier 10.1109/TIM.2024.3398100

establishing a global consistent dense map through the data
from multiple robots, real-time updating and maintenance of
the established global dense map are essential for achieving
more accurate reconstruction [7]. This maintenance involves
incorporating update information from different levels of the
map to ensure its continuous accuracy and reliability.

In recent years, numerous researchers have focused on
studying vision-based algorithms for simultaneous localiza-
tion and mapping (SLAM) of multiple robots, which have
demonstrated promising results in both map building and
localization. These methods can be broadly classified into
filter-based and keyframe-based approaches. Some of the
classic works based on filtering include C2TAM [8] and Flying
Smartphones [9]. In contrast to filtering-based approaches,
keyframe-based methods exhibit advantages in terms of data
transmission and fusion, such as classical work CoSLAM [10],
MOARSLAM [11], CVISLAM [12], and COVINS [13].
On the other hand, dense mapping techniques have also
been extensively researched and applied. Examples include
KinectFusion [14] as a model-based approach, and Contour-
SLAM [15] and ElasticFusion [16] which use visual feature
bundle adjustment (BA) and pose graph optimization (PGO).
Scholars have continuously studied and improved the tradeoff
between speed and accuracy in dense map reconstruction.
However, research on multirobot dense mapping remains
limited [17].

Multirobot dense mapping algorithms are crucial for
large-scale scene reconstruction. Achieving multirobot dense
mapping presents several challenges such as limited bandwidth
and data transfer, as well as the joint maintenance of a global
dense map by multiple robots. Current researches focus on
task assignment and collaborative path planning [4], dense
mapping for distributed robot clusters [18], or reducing trans-
mission bandwidth by increasing the computational pressure
on the front-end which requires powerful capabilities for each
robot [17]. To achieve centralized multirobot dense mapping
while minimizing the communication overhead and enabling
fast updates and maintenance of the dense map, there is a need
for an algorithm that addresses these requirements.

To solve the above problems, we propose a
communication-efficient centralized multirobot real-time
dense mapping system. The system uses a generalized
visual odometry (VO) front-end. A transmission module

1557-9662 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0150-6412
https://orcid.org/0000-0001-7213-9413
https://orcid.org/0000-0002-8212-2452

7504812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

is designed to mitigate transmission stress using data
preprocessing, selective transmission, and compressed
transmission techniques. Loop closure detection in the
back-end consolidates information from multiple robots to
establish a comprehensive global dense map. Moreover,
a storage mechanism for keyframes and point clouds is
devised to facilitate efficient information retrieval and global
point cloud updates. Through these methodologies, the
system successfully achieves centralized multirobot dense
reconstruction. The contributions are summarized as follows.

1) We propose a novel framework for dense mapping in
multirobot systems. Using a back-end dense mapping
approach, we alleviate the computational burden on the
front-end proxies.

2) A transmission module is designed to mitigate trans-
mission stress using data preprocessing, selective
transmission, and compressed transmission techniques.

3) We establish a globally consistent dense map and design
a storage mechanism for keyframes and point clouds to
facilitate efficient information retrieval and global point
cloud updates.

The remainder of this article is organized as follows:
Section II discusses related work, Section III gives the system
overview of our proposal, Section IV shows the mapping and
transmission algorithm implemented on the front-end robots,
and Section V describes the dense mapping algorithm executed
on the back-end server. Section VI shows the experimental
results, and Section VII gives the conclusions and future work.

II. RELATED WORK

In the task of centralized multirobot dense mapping, the core
research topic is in multirobot SLAM and dense mapping, and
in this section we briefly review the related work in these two
parts.

A. Multirobot SLAM

With the development of SLAM algorithms and multirobot
systems, the study of multirobot SLAM has received more
and more attention. CoSLAM [10] proposes a centralized
multimonocular camera SLAM algorithm in dynamic envi-
ronments, which achieves better results in indoor scenes.
C2TAM [8] is a distributed multirobot SLAM algorithm that
uses a cloud server for map optimization and storage, reducing
the memory and computational pressure on individual robots.
However, it has a high demand for network connectivity.
MOARSLAM [11] investigates the scalability of multiple
robots and makes it possible for heterogeneous devices to eas-
ily extend the map in SLAM through a client-server approach.
CCM-SLAM [19] presents a multirobot centralized collabora-
tive SLAM framework. Each robot runs an independent visual
odometer and the server performs loop closure detection and
global optimization to achieve collaborative multirobot map-
ping. However, due to the pressure of communication traffic,
the bandwidth limits the number of robots. CVI-SLAM [12],
on the other hand, proposes a keyframe-based multirobot
visual inertial collaborative SLAM system, which is also
similarly limited by the communication bandwidth. To reduce

the communication pressure and increase the number of robots,
PairCon-SLAM [20] leverages socket transmission mechanism
to distribute computational and storage resources across multi-
ple PCs for enhanced scalability in large-scale dense mapping.
COVINS [13] proposes a framework that increases the number
of robots to up to 12 robots for simultaneous mapping by
reducing redundant information and coordination overhead and
enables flexible client-side robot scalability.

In the aforementioned multirobot SLAM algorithms,
researchers have made significant efforts in achieving global
consistency mapping and multirobot communication, suc-
cessfully constructing sparse maps in multirobot scenarios.
However, in the context of dense mapping with multiple
robots, the transmission of a vast amount of dense infor-
mation remains a challenge. The existing communication
methods need further research and exploration to enable
efficient transmission of such data. This article presents a
framework for optimizing data transmission in multirobot sys-
tems, incorporating techniques such as filtering out irrelevant
data, optimizing data formats, and using data compression
to further enhance communication bandwidth utilization. This
framework provides a reliable foundation for dense mapping
in the back-end of multirobot systems.

B. Dense Mapping SLAM

SLAM algorithms for dense mapping are generally con-
structed using LiDAR [21], RGB-D cameras [22], or stereo
vision [23]. KinectFusion [14] aligns frame to model using
iterative closest point (ICP) algorithm, which is the earliest
algorithm based on RGB-D cameras to achieve dense scene
building and requires high stability of motion. ElasticFu-
sion [16] uses the method of surfels based on KinnectFusion
to perform loop closure detection by means of model-to-
model to ensure the global consistency of the closed loop.
BundleFusion [24], on the other hand, improves on the
reconstruction of large scenes. In recent years, the pro-
posed ORBSLAM [25] makes feature-based dense mapping
algorithms with better results [26], [27], and feature-based
algorithms are also more convenient for direct data transfer
from multiple robots. In multirobot dense mapping, a part of
the research [4], [28] mainly focuses on task assignment and
path planning of multirobot in maps. Kimera-multi [18], on the
other hand, implements a distributed multirobot semantic
SLAM system using an efficient communication method. The
other algorithm [17], [29] focuses on front-end mapping and
improves the representation of point cloud data to alleviate
communication overhead. However, this approach increases
computational burden on the front-end and lacks efficiency
in timely optimization and updating of dense maps.

Compared with the aforementioned papers, this article
proposes a novel framework for multirobot dense mapping.
By adopting a back-end dense mapping approach, the compu-
tational burden on the front-end robots is reduced. In addition,
the framework introduces a well-designed mechanism for
storing keyframes and point clouds, allowing for flexible
management and real-time maintenance of the back-end point
cloud data.

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

ZUO et al.: CCMD-SLAM WITH REAL-TIME POINT CLOUD MAINTENANCE 7504812

III. SYSTEM OVERVIEW

In this article, we propose communication-efficient cen-
tralized multirobot dense SLAM (CCMD-SLAM)-based on
COVINS (visual–inertial SLAM for centralized collabora-
tion) [13]. The key differences between CCMD-SLAM and
COVINS lie in the data interaction module, point cloud
management module, and dense VO module. The proposed
algorithm is specifically designed and aims to achieve efficient
multirobot dense mapping.

The system structure of CCMD-SLAM is shown in Fig. 1.
In this system, each robot uses an RGB-D VO front-end
to perform local mapping and maintenance. On the robot
side, we propose a method to optimize data transmission
by filtering and compressing the data, which reduces the
transmission pressure. Robots transmit data through networks,
offloading computationally intensive processes to back-end
servers. In terms of transmission, we design an efficient data
transfer framework by optimizing, filtering, and compressing
the data, reducing transmission pressure and delivering it to
the server for decompression and conversion. After back-
end mapping and optimization, we propose a point cloud
management module. The system establishes local dense
point cloud maps for each robot individually based on their
RGB-D information. Through the map management module,
overlapping maps are detected and fused to create a global
dense point cloud map. To enhance the accuracy and stor-
age efficiency of the global point cloud map, we introduce
keyframe information labels for the point clouds and use
hierarchical storage of the point cloud data. This enables
us to dynamically update the pose of each frame in the
overall point cloud in real-time, based on the results of both
local and global optimization. In addition, redundant point
cloud information is removed during this process, optimiz-
ing the overall point cloud map for precision and storage
capacity.

IV. VISION FRONT-END AND DATA TRANSMISSION
PROCESSING

A. VO Front-End

To achieve dense mapping with multiple robots, our sys-
tem uses RGB-D cameras to perform front-end tasks while
optimizing and filtering the data based on camera parameters.
The commonly used depth cameras have a depth measurement
range of 0.1–25 m and an accuracy of ±1% (typical) or ±2%
(maximum) in depth measurement. The depth uncertainty
ranges from 1 to 10 mm. In this article, we use the Intel
RealSense D435 camera for testing.

In the framework proposed in this article, any VO system
based on keyframes and processing RGB-D information can
be used to generate a multirobot globally consistent map,
while allowing the use of inertial information to improve
operational accuracy. The RGB-D front-end module from
ORBSLAM3 [30] is used in the testing, and the size of the
local map it maintained is restricted to alleviate computational
burden.

Fig. 1. Overview of the CCMD-SLAM system architecture.

B. Keyframe-Based Transfer Format Adjustment and Image
Sampling

During the CCMD-SLAM data transmission process, the
client transmits several types of information to the server,
including keyframe pose, feature point position, ORB fea-
tures, and RGB-D information. The transmission information
is stored in 8-bit and 16-bit formats according to the data
characteristics instead of the 32-bit format in the original
transmission information, which can significantly save. On the
other hand, encoding and compressing the transmitted data
can avoid the redundant space generated by the serialization
process of structured data, which can further reduce the
transmission pressure.

RGB-D information typically consists of color and depth
images and has the highest bandwidth usage. The color image
has a resolution of (1920, 1080, 3) with each pixel having a
value between 1 and 255. After format conversion, each pixel
is represented by 8 bits and it is resampled to a resolution of
(640, 480, 3) to match the depth image. For depth images, the
measurement error tends to escalate with increasing distance.
Considering the camera error parameters and depth range
outlined in Section I, it can be determined that under the
existing conditions of a depth camera, the distance error is
given by

δ = Pc × d (1)

where 1 mm represents the minimum measurement error.
To minimize data while maintaining precision, any data

below 1 mm is deemed unreliable within the transmission
framework. In addition, due to the camera depth range being
100–25 000 mm, which is less than the representation range
of 16-bit depth data, it is possible to convert all the 32-bit data
into 16-bit for transmission, effectively reducing data transfer
pressure.

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

7504812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

To further reduce data transmission, image downsampling
can be performed without compromising the accuracy of dense
mapping. The geometric precision of the dense point cloud
relies heavily on the camera parameters used for point cloud
reconstruction. The main influencing factors can be attributed
to the camera’s image resolution and the depth accuracy of
the depth camera. Specifically, the resolution determines the
level of detail captured in the camera image, while accuracy
determines the range of measurement errors in depth values.
Both the factors collectively affect the precision of the coordi-
nate calculations for each point in the point cloud. Specifically,
given a camera resolution of w × h, the range corresponding
to each pixel in physical space can be represented as

1xr =
W
w

=
2Z tan(θx/2)

w

1yr =
H
h

=
2Z tan(θy/2)

h

(2)

where W and H represent physical spatial dimensions, while
Z denotes the measurement depth. In addition, θx and θy

denote the camera’s horizontal and vertical field of view,
respectively.

On the other hand, the depth accuracy of a depth camera,
usually expressed as δz/z, is typically represented as a per-
centage, such as 1%. According to the principle of similar
triangles, the magnitude of the physical error corresponding
to that pixel can be calculated as follows:

1xd = 2Z tan
θx

2
×

δZ
Z

1yd = 2Z tan
θy

2
×

δZ
Z

.

(3)

Combining these two factors, the coordinate error of each point
in the point cloud can be approximated as{

1x = max(xd , xr)

1y = max(yd , yr).
(4)

It is evident that higher resolution and accuracy contribute to
the reduction of point cloud errors. Nevertheless, it should be
noted that excessively high resolution will eventually reach a
saturation point, at which accuracy becomes the determining
factor.

In this article, the image downsampling rate is expressed as
a proportionality factor r which represents the proportionality
between the side dimensions of the new image and the side
dimensions of the original image. According to the tested
parameters of the RealSense D435 camera, the results are
shown in Fig. 2. In consideration of maintaining the geometric
precision of the point cloud and for facilitating pixel com-
putations, this article adopts downsampling rates of 0.5 and
0.25 for image processing. This strategy aims to further reduce
data transmission. The subsequent experiments will delve into
the specific effects of downsampling.

C. RGB-D Information Filtering Based on Co-View

The framework in this article diverges from the traditional
method of model-to-model point cloud fusion. Using front-
end VO, it achieves relatively accurate keyframe poses. These

Fig. 2. Relationship between point cloud accuracy, depth accuracy, and
resolution.

poses are further refined through back-end global optimization,
enhancing their precision. Consequently, transmitting highly
overlapping keyframe point clouds becomes redundant.

In ORBSLAM [30], a covisibility-based approach is used to
determine keyframes, where a keyframe is inserted when the
number of tracked keypoints falls below a certain threshold.
The system compares the ORB descriptors of the recognized
feature points in the current frame with the ORB descriptors
of map points, considering points below a threshold as tracked
key points, and establishes a covisibility graph. The similarity
between keyframes can be visually demonstrated by counting
the number of tracked points between them. Consequently,
we propose a filtering method for RGB-D information based
on the covisibility graph established by the front-end. This
approach allows for consecutive keyframes to be without
RGB-D information. Our method aims to reduce redundant
RGB-D data transmission by evaluating the shared observation
between the current keyframe KFc and connected keyframes.

As illustrated in Algorithm 1, the connected keyframes KFs
that have co-observation with KFc are first extracted from
the covisibility graph and sorted by their connection weights
weight with KFc. The weights indicate the number of shared
feature points observed by the keyframe pair. After removing
KFs that have not been transmitted, each remaining KF is
checked whether its weight exceeds the minimum threshold
Smin. This indicates significant observation overlap with KFc.
Therefore, the RGB-D data of KFc could be skipped for
transmission. The initial Smin is decrementally updated for
each qualified KF to adaptively adjust the filtering threshold.
If no connected KF satisfies the Smin criteria, the RGB-D data
of KFc will be transmitted.

The keyframe filtering thus selectively share RGB-D data
based on quantified co-observation. By incrementally updating
Smin, it avoids sending redundant data while adapting to differ-
ent levels of visual overlap between keyframes. The approach

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

ZUO et al.: CCMD-SLAM WITH REAL-TIME POINT CLOUD MAINTENANCE 7504812

provides an efficient RGB-D transmission mechanism for
visual SLAM systems.

Algorithm 1 RGB-D Keyframe Selection
Require: Current keyframe K Fc, connected keyframes K Fs,

initial threshold Smin
Ensure: Transmission decision for K Fc

1: Extract K Fs connected to K Fc from covisibility graph
2: Sort K Fs by shared feature weights weight with K Fc

3: Remove K Fs that have not been transmitted
4: for each remaining K F in K Fs do
5: if weight > Smin then
6: Decrement Smin adaptively
7: end if
8: end for
9: if No K F satisfies threshold Smin then

10: Return Transmit K Fc

11: else
12: Return Skip transmitting K Fc

13: end if

D. Transfer of Mapping Data Compression

Adding the converted RGB-D information to the keyframe
transfer requires an additional transfer traffic per frame.
To further reduce transmission pressure, data compression
algorithms are used to reduce image transmission traffic, and
image compression is performed on the basis that the time of
compression does not affect real-time image construction.

Color image compression algorithms have matured over the
years, often relying on image transformation coding techniques
to compress and remove redundant data. To better integrate
image compression algorithms with SLAM algorithms, general
compression algorithms were tested during execution of the
VO front-end algorithm selected in Section IV-A to evaluate
compression ratios and runtimes. Based on the compres-
sion ratios and times [31], JPEG compression is chosen for
processing.

For depth images, common image transform coding meth-
ods such as discrete cosine transform (DCT) and discrete
wavelet transform (DWT) cannot achieve satisfactory results
due to the high discreteness of pixel values. In addition,
since the numeric values directly affect the accuracy of dense
mapping, a near-lossless compression method is required. The
system uses run-length encoding to compress depth images,
ensuring data precision is preserved during the compression
process. Run-length encoding can be represented as

RLE(s) =

n∑
i=1

ciri (5)

where RLE(s) denotes the tour code of the string s, n is the
number of tours, ci is the character of the i th tour, and ri is
the number of repetitions of the i th tour.

Run-length encoding achieves lossless compression by stor-
ing repeated fields in the data efficiently, and it enables fast
decompression for data restoration. To further enhance the
efficiency of run-length encoding, we have designed a depth

image quantizer tailored to the characteristics of the RealSense
D435 camera

d = 0, (d ⩽ 200)

d = d − 200, (200 < d ⩽ 3000)

d = 2800 +
d − 3000

2
, (3000 < d ⩽ 6000)

d = 4300 +
d − 1500

4
, (6000 < d ⩽ 12000)

d = 5800 +
d − 12000

8
, (12000 < d ⩽ 24000)

d = 0, (24000 < d)

(6)

where d is the depth image pixel depth in millimeters.
The quantizer divides the depth range into six parts based on

the camera properties and sets values outside the actual range
to 0. The camera’s ideal range, from 0.3 to 3 m, remains
unchanged. As indicated by Formula (1), considering that
depth image errors are distance-dependent, the range outside
the ideal bounds is proportionally divided into three parts, each
compressed separately. Quantizing the depth image allows for
maximum compression without compromising data accuracy.
Finally, the compressed data are binary encoded using the
LZ77 algorithm [32], completing the compression of the depth
image.

V. MULTIMAP AND POINT CLOUD MANAGEMENT

A. Multimap Management

After receiving the information of each robot, the map
manager in the back-end server will initialize a new map,
decompress, and store the keyframe data. The map manager
will designate the first mapped map as the primary map for
dense mapping and allow other maps to be fused. The system
keeps running loop closure detection, matching and identifying
each keyframe using the bag-of-words method [33]. Once
a loop closure is detected, a 3-D–2-D RANSAC is used to
calculate the relative pose T between matched keyframes, and
PGO is used to optimize the poses. When a loop closure
occurs between two robots, their maps are fused using the
relative transform T , and a new map is built to replace the
two original maps. Only after the primary map finishes map
fusion, the fused map keyframes are allowed to generate point
clouds for further dense reconstruction.

B. Point Cloud Mapping

The point cloud generation module runs attached to the
primary map, fusing allowed keyframes based on the opti-
mized poses to build a dense map. For mainstream RGB-D
cameras, the depth image pixel value represents the distance
in the z-axis direction in the camera coordinate system rather
than the actual distance to the camera’s optical center. Let
P = (X, Y, Z)T be a point in space under the camera
coordinate system and p be the coordinate of the point under
the pixel coordinate system. The relationship between the two
coordinate systems is

Z p = Z

 u
v

1

 =

 fx 0 cx

0 fy cy

0 0 1

 X
Y
Z

 = K P (7)

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

7504812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

where u and v are the coordinates under the pixel coordinate
system, K is the camera internal reference matrix, and fx , fy ,
cx , and cy are the camera internal references.

Then the coordinates in the actual space can be obtained as

X = Z(u − cx)/ fx

Y = Z
(
v − cy

)
/ fy

Z = d. (8)

The RGB-D image can be used to convert each pixel into the
corresponding 3-D point coordinates by applying (8).

For each keyframe, we define the rotation and translation of
the spatial point Pkf relative to the camera coordinate system
as Rc

kf and T c
kf, respectively. In addition, we define the rotation

and translation from the camera coordinate system to the world
coordinate system as Rw

c and T w
c , respectively. Consequently,

the coordinates Pw of the point in the world coordinate system
can be calculated as follows:

Pw = Rw
c ∗

(
Rc

kf ∗ Pkf + T c
kf

)
+ T w

c . (9)

The keyframe point clouds from robots are fused into a global
point cloud using (9). Since there are many duplicate parts
across the keyframe point clouds, the fusion will generate a
large number of redundant points. Therefore, voxel filtering is
used to filter the point cloud. The global dense reconstruction
is finished by voxel filtering the point cloud using the (x, y, z)
coordinates and keeping the maximum labeled data in each
voxel.

C. Point Cloud Management

The dense map manager runs on the map manager and
maintains point cloud data for all the robots. The framework
of the dense map manager is shown in Fig. 3. Each time a
new map is fused into the primary map, a new point cloud
collection is created, enabling individual modification and
reading of point cloud data for each robot. Each point cloud
set can undergo a global pose transformation during the map
fusion process to ensure global consistency. The transformed
point cloud sets can then be merged into a global point cloud
through point cloud registration.

In point cloud operations, the most computationally inten-
sive steps are point cloud filtering and searching for a specific
frame of point cloud. These two steps have a computational
time proportional to the number of point clouds being pro-
cessed. To reduce the computational resources consumed by
updating and stitching point clouds, a tree index is used to
divide the global point cloud into point clouds maintained
separately for each robot. And each robot point cloud is
divided into local maintenance point clouds by different map
optimization and update methods. The filtering procedure uses
a sliding window based on keyframe index. At each incremen-
tal update or addition of a keyframe, the point cloud within
the window undergoes filtering to mitigate the computational
burden introduced by the filtering process. The point clouds
are stored in the format P = (X, Y, Z , R, G, B, N)T, where
the label N is combined with the index of each level in the
tree diagram, distinguishing the point cloud of each keyframe
for efficient retrieval and updating.

Fig. 3. Tree structure dense map manager. BA is bundle adjustment, PGO
is pose graph optimization, and VF is voxel filtering.

In multirobot dense mapping tasks, the map accumulates
errors from multiple robots as the mapping area expands.
To maintain the accuracy of the dense map, real-time
optimization and updates are required. The keyframe-based
construction method makes it easy and efficient to optimize
the point cloud using information from keyframes. Point cloud
updates can be categorized into three types based on the
optimization method used and the content being updated.

1) Front-End VO Local BA Optimization: Front-end VO
local BA optimization updates single-frame point cloud.
BA optimization updates are delivered separately via data
transfer and are performed in real-time to update the keyframe
point cloud. For updating a single-frame point cloud, the
spatial point Pkf that updates the point cloud is retrieved from
the local point cloud P using its N label, as explained in
Section V-C. After deleting the frame point cloud from the
local point cloud, the updated point cloud is added to the local
point cloud and merged with adjacent point clouds. Finally,
voxel filtering is used to remove redundant spatial points.

2) Back-End PGO: When two keyframes are detected as
loop closures, PGO optimization is performed on the visible
edges of the loop closure interval and the keyframe poses
and local point clouds are updated. Let Pref be the keyframes
detected as loops. Pref is first deleted from the global point
cloud. The updated multiframe point cloud and adjacent partial
clouds are then merged to rebuild the global cloud, which is
finally filtered.

3) Back-End GBA Optimization: Unlike COVINS, an addi-
tional global bundle adjustment (GBA) strategy is imple-
mented for RGB-D front-end VO in the absence of inertial
information. The global BA minimizes the reprojection error
of all the KFs and MPs using G2O’s Levenberg–Marquardt
algorithm to improve the accuracy of the overall map and
global point cloud. For the global optimization of the overall
point cloud update, we determine the keyframes that have
been changed after the global optimization according to the
update result and reconstruct each robot point cloud Pi that has
changed. The updated point cloud of all the robots is integrated
into a new global point cloud Pnew.

In summary, our algorithm integrates BA optimization
for front-end robots with multirobot PGO optimization and
multirobot global BA optimization for updating maps and
global point clouds. This aims to effectively reduce cumulative

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

ZUO et al.: CCMD-SLAM WITH REAL-TIME POINT CLOUD MAINTENANCE 7504812

Fig. 4. Comparison results of three client trajectory fusion with real data. x-, y-, z-axis translation and roll, pitch, and yaw angle estimated results.

errors during the mapping process and improve map accu-
racy. In addition, the modular point cloud update strategy
is designed to efficiently conserve computational resources,
based on optimization types and scopes.

VI. EVALUATION

The experimental platform for this chapter is AMD Ryzen 7
4800H (eight cores at 2.90 GHz) with 16 GB of RAM.
In this section, to validate the performance of CCMD-SLAM,
we use the RGB-D benchmark dataset [34] (TUM dataset)
from the Technical University of Munich for evaluation by
extensive experiments. We use the partitioned dataset testing
method [35], splitting the TUM datasets into multiple seg-
ments with 10% overlap. Multiple clients are simultaneously
run to simulate multirobot front-end mapping, with data trans-
mitted over the network to another server for collaborative
global map building and real-time dense mapping and main-
tenance. The effects of multirobot mapping, dense mapping,
and data transfer efficiency are tested and compared through
simulations with single and multiple clients, respectively.

A. Multirobot Mapping Evaluation

We first conduct performance tests on the f2/desk dataset
using three clients to evaluate the performance of multirobot
mapping and trajectory fusion. The errors between the fused
trajectories of the three clients and the real acquisition tra-
jectories are shown in Fig. 4. The plot reveals that the fused
trajectories of multirobot mapping exhibit minimal deviation
from the ground-truth trajectories. Furthermore, the fused
sections display a smooth connection with no significant
introduction of errors. The dense mapping result on the TUM
f2/desk dataset is shown in Fig. 5 which reflects the local point
clouds maintained by multiple clients. And the reconstruction
results on the TUM dataset and the ICL-NUIM dataset are
shown in Fig. 6. Next, ten measurements were evaluated using

Fig. 5. Merged reconstruction of local point clouds maintained by multiple
clients on CCMD-SLAM.

the evo tool [36], and the absolute trajectory error root mean
square error (RMSE) is used to assess the performance of our
system. The results of the tests are presented in Table I.

The experimental results show that our system can effec-
tively correct the trajectory drift, and the RMSEs on the
f1/desk, f2/xyz, and f3/office datasets reach 0.020, 0.004,
and 0.015 m. Regarding the mapping results, our RMSEs
on all the three datasets exceed those of the existing dense
reconstruction RGB-D SLAM algorithms. This improvement
in mapping accuracy is attributed to the establishment of
numerous precise constraints among robots through multi-
robot PGO and GBA optimization processes. Also during the

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

7504812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 6. Reconstruction results on the TUM dataset and the ICL-NUIM
dataset.

experiment, our system is able to run on datasets where the
existing RGB-D SLAM algorithms do not work properly, such
as f2/large_with_loop and f2/360_hemisphere.

B. Evaluation of the Effect of Dense Reconstruction

To compare the quality of scene reconstruction, our system
is used to reconstruct scenes in several datasets from TUM.
Real ground data are also used to construct actual recon-
structed point clouds, and the two point cloud models were
compared and analyzed. To qualitatively analyze and compare
the quality of point cloud, reconstruction errors were calcu-
lated using the Hausdorff distance and average distance, with
the aid of CloudCompare software. The Hausdorff distance
can be expressed as

H(A, B) = max(h(A, B), h(B, A)). (10)

After aligning the centers of the reconstructed point clouds
with the ICP algorithm, we calculated the Hausdorff distance
and average distance between the reconstructed point cloud
produced by our method and the actual data reconstructed
point cloud. The results of the calculations are presented in
Table II.

During the scene reconstruction process, a point cloud
reconstruction effect with centimeter-level accuracy is
achieved. The overall Hausdorff distance ranged between
0.01 and 0.1 m, while the average error is within
0.001–0.01 m. Compared with the keyframe-based reconstruc-
tion algorithm [35], the error of 0.44 m on f1/desk has been
significantly improved.

For datasets with relatively small scenes, such as f1/desk
and f2/xyz, transmitting images with a sampling rate of 2 can
yield more detailed reconstructed scenes and improve the
reconstruction effect. Therefore, the appropriate sampling rate
can be chosen based on the size of the scene.

We compared the reconstruction accuracy on the ICL-NUIM
dataset by measuring the average distance between the recon-
structed point clouds and real models, along with several other
RGB-D methods, as shown in Table III. Two agents were
deployed to autonomously process segmented datasets for

TABLE I
COMPARISON OF STATISTICAL RESULTS OF ABSOLUTE TRAJECTORY

ERROR RMSE (UNIT: m)

TABLE II
COMPARISON RESULTS OF RECONSTRUCTED ACCURACY ON TUM

DATASETS WITH REAL DATA

TABLE III
COMPARISON RESULTS OF RECONSTRUCTION ACCURACY IN THE

ICL-NUIM DATASET (UNIT: cm)

scene reconstruction. Due to the limited number of keyframes
in the kt1 dataset, comparative experiments were conducted
on the other three datasets. In terms of average performance,
our algorithm achieved a reconstruction average error of
0.93 cm, surpassing other algorithms in average accuracy.
In the reconstruction of some small scenes, it exhibited slight
errors compared with ElasticFusion [16]. A distinguishing
feature of our algorithm is its exclusive reliance on CPU
computation throughout, conserving computational resources
and rendering it particularly suitable for multirobot systems.

C. Data Transfer Effect Evaluation

To evaluate the data transmission effect of our system,
we build and collect transmission data on the above dataset
using single and multiple robots, respectively, as shown in
Table IV. As can be seen from the table, the complexity and
scale of the scene increase, and the volume of transmitted
data and the number of keyframes also increase. Depending
on the complexity and spatial size of the captured scenes in the
datasets, the algorithm’s data transmission ranges from 15 to
350 kB/s. Furthermore, the transfer rate of keyframes ranges
from 0.3 to 5.5 Hz. It is worth noting that common WiFi
facilities are capable of easily achieving the desired trans-
mission goals. In addition, the number of proxies and the
complexity of the scene do not affect the data volume of
individual proxies. Therefore, the total network traffic caused
by proxy-to-server data transmission is directly proportional to
the number of participating proxies. After data processing and

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

ZUO et al.: CCMD-SLAM WITH REAL-TIME POINT CLOUD MAINTENANCE 7504812

TABLE IV
COMPARISON OF AVERAGE TRAFFIC PER SECOND (ATPS), AVERAGE

KEYFRAME RATE (AKFR), AND AVERAGE KEYFRAME SIZE (AKFS)
OF MULTIPLE ROBOTS FOR MAP BUILDING

Fig. 7. Comparison of data transmission between CCMD-SLAM and
COVINS.

compression, the average size of keyframes reached 58.78 kB.
Next, we conducted tests on the transmission of individual
keyframes.

The keyframe-based approach to centralized multirobot
mapping requires passing keypoint data, feature descriptors,
and other parameters to the back-end server. At the same
time, to implement dense mapping, additional RGB-D infor-
mation needs to be passed to the back-end. We compare
the transmission of each part of the CCMD-SLAM and
COVINS algorithms as shown in Fig. 7. As illustrated in
the figure, CCMD-SLAM achieves a reduction of key point
transmission data volume to 18.6% after data processing
and compression. In addition, the RGB-D information, which
is initially 2.05 MB/frame, is reduced to an average of
8.67 kB/frame, corresponding to a volume of only 0.4% of
the unprocessed information. Overall, our algorithm achieves
a 38.2% reduction in the overall data transmission volume
compared to COVINS, while additionally implementing dense
graph construction.

D. Module Ablation Experiments

Subsequently, we conducted ablation experiments on the
designed module algorithm using the TUM dataset and evalu-
ated the effects of our parameter choices and algorithm. First,
we tested the effects of downsampling and keyframe selection,
setting the global point cloud voxel size to 5 cm. The results
of mapping and transmission under different parameters are as
shown in Table V

It can be observed from Table V that using images with
different sampling rates for transmission significantly impacts

TABLE V
EFFECTS OF DOWNSAMPLING AND KEYFRAME SELECTION ON

MAPPING AND TRANSMISSION

TABLE VI
DEPTH COMPRESS TEST RESULT. (DS REFERS TO IMAGE
DOWNSAMPLING, QT REFERS TO IMAGE QUANTIZATION,

AND RLE REFERS TO RUN-LENGTH ENCODING)

the size of transmitted RGB-D information. Reducing the size
of the image edge length by half results in a quarter reduction
in pixel count. However, due to the overlapping perspectives
of keyframes and partial perspectives from multiple robots, the
average decrease in the constructed point cloud count is 28.3%.
Therefore, within permissible limits, decreasing the sampling
rate enhances transmission efficiency. The highest transmission
efficiency is achieved when the sampling rate r = 0.25.
In addition, keyframe selection strategies can further reduce
the transmission. After applying different sampling rates and
filtering strategies, the transmitted RGB-D information can be
reduced to 7.45% of the original. On the other hand, with the
reduction of transmission pressure, the point cloud becomes
sparse. In extreme cases, the point cloud quantity is 38.75%
of the original image, indicating an increasing efficiency in
transmission. In practical operation, appropriate downsampling
parameters can be selected based on the desired point cloud
density.

The test results of depth compression are shown in Table VI,
where we conducted tests using various combinations of algo-
rithms in our module. It can be observed that using a quantizer
for run-length encoding of depth images yields better results,
and the quantizer incurs an additional time consumption of
only 0.166 ms. Furthermore, binary encoding can further
compress data on the basis of run-length encoding, achieving
maximum compression effects. The overall time consumption
of 1.286 ms is acceptable compared with the fastest keyframe
transmission rate of 5.5 Hz.

Finally, we compared our strategy for updating dense
point clouds with the original method of updating through
reconstructing point clouds, as shown in Fig. 8. It can be
observed that using the strategy of reconstructing point clouds
for updates requires a significant amount of computational
time, which continuously increases with the growth of point
cloud quantity. Our algorithm, using point cloud indexing and
grouped storage, can swiftly locate and modify keyframe point
clouds needing updates during the update process, consistently
within a computation time of 0.4 ms or less.

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

7504812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 8. Point cloud update strategy consumption comparison.

Fig. 9. CPU usage of three different algorithms: CCMD-SLAM, the general
ORB-SLAM3, and the ORB-SLAM algorithm with direct dense mapping.

E. Runtime Performance Analysis

To validate that our algorithm alleviates the computational
burden on the robot’s front end, we conducted tests on the
CPU usage of the front-end robot. Furthermore, we compared
the CPU usage of our algorithm with that of other algorithms
executed on the same computer using the method outlined in
the article [17]. Our system was compared with the standard
ORB-SLAM3 and ORB-SLAM algorithms using direct dense
mapping on the f2/desk dataset. The experimental results are
depicted in Fig. 9. From the graph, it can be observed that
using the approach of direct mapping in the robot front-end
leads to a continuous increase in CPU usage as the mapped
area expands. In contrast, our system adopts a centralized
mapping approach where the front-end only needs to maintain
a limited map, resulting in more stable CPU usage during
runtime. Furthermore, as shown in the graph, even when
running the data transmission thread, CCMD-SLAM exhibits
lower CPU usage compared with the ORB-SLAM algorithm.
Moreover, by offloading the dense mapping task to the back-
end server, our algorithm reduces the front-end’s CPU usage
for dense mapping by 61.28%.

During testing, we conducted performance analysis of the
front-end and back-end modules to evaluate the algorithm’s
real-time capability. Specifically, the average time consump-
tion for data preprocessing and transmission at the front-end

Fig. 10. CCMD-SLAM real-world multirobot dense reconstruction result
(left image shows the dense reconstruction of the office, and the right image
depicts the reconstructed trajectory after loop closure fusion).

was 7.0 and 6.1 ms, respectively. The back-end algorithm
required 3.3 ms for data processing and 5.7 ms for dense
reconstruction. As illustrated in Table IV, the minimum time
interval for keyframe processing was 180 ms. Within each
keyframe interval, real-time reconstruction and updating of
the back-end dense map are fully achievable. Simultaneously,
during system optimization updates to keyframe poses, only
transmitting keyframe indices and pose transformation matri-
ces between the front- and back-ends is sufficient to ensure
real-time updates of the map. In addition, since the modules
operate in parallel, the inclusion of data processing stages does
not impact keyframe creation.

F. Real-World Experimental Testing

We conducted tests of our algorithm in a real-world
scenario. We used a desktop computer as the back-end
server and two laptops as front-end agents. Data transmission
occurred through a local area network (LAN). Each laptop
was connected to a RealSense D435 camera for image acqui-
sition. We performed multirobot dense reconstruction tests
in an office environment, and the reconstruction results are
illustrated in Fig. 10.

In the reconstructed scene, loop closures of the two agents
were rapidly identified, establishing a globally consistent
map. Simultaneously, various objects within the office were
well-reconstructed without experiencing shape distortions.
In the testing phase, due to the high complexity of the
scene, the front-end transmitted an average of 2.94 frame/s,
with an average transfer rate of 381 kB/s. The maximum
transfer rate reached 1.27 MB/s, and the server accumulated
51.1 MB of data. In terms of computational load, the back-end
server experienced a peak CPU usage of 16.37%, while each
front-end agent only used a maximum of 7.74%. Accord-
ing to the test results, it can be concluded that ordinary
WiFi load and the computational resources of the robots are
sufficient to meet the algorithm’s requirements. However, real-
world testing also revealed some issues, including a narrow
camera field of view and suboptimal tracking performance
under severe shaking, which will be addressed in subsequent
research.

VII. CONCLUSION AND FUTURE WORK

In this article, we propose CCMD-SLAM, a multirobot
SLAM that allows efficient data transfer and dense map-
ping and real-time point cloud maintenance in the back-end.

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

ZUO et al.: CCMD-SLAM WITH REAL-TIME POINT CLOUD MAINTENANCE 7504812

We establish a complete dense map based on keyframe infor-
mation by constructing local maps using multiple RGB-D
front-ends and transmitting them to the back-end. To reduce
data transmission, preprocessing and compression of keyframe
data and RGB-D images are performed, and RGB-D image
transmission is filtered by a co-viewing graph, resulting in
a 38.2% reduction in data transmission flow. Furthermore,
we propose a dense map management strategy to establish
and real-time maintain a global dense point cloud, using
RGB-D information collected by multiple robots. During the
mapping process, different strategies can be used to quickly
update the point cloud map according to various map opti-
mization methods, leading to a more precise dense mapping
result. Finally, through experiments on standard datasets and
real-world testing, we have verified the effectiveness of the
algorithm in reducing communication burden. In addition,
we have successfully achieved multirobot dense mapping
while ensuring rapid updates of the dense map.

In future work, we plan to further investigate the structural
characteristics of the point cloud, optimize the point cloud
reconstruction effect and establish an even more accurate
dense map. These efforts will enhance and refine our proposed
method.

REFERENCES

[1] H. Xie et al., “Semi-direct multimap SLAM system for real-time sparse
3-D map reconstruction,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–13,
2023.

[2] J. Yuan, S. Zhu, K. Tang, and Q. Sun, “ORB-TEDM: An RGB-D SLAM
approach fusing ORB triangulation estimates and depth measurements,”
IEEE Trans. Instrum. Meas., vol. 71, pp. 1–15, 2022.

[3] C. Fan, J. Hou, and L. Yu, “Large-scale dense mapping system based
on visual-inertial odometry and densely connected U-Net,” IEEE Trans.
Instrum. Meas., vol. 72, pp. 1–16, 2023.

[4] S. Dong et al., “Multi-robot collaborative dense scene reconstruction,”
ACM Trans. Graph., vol. 38, no. 4, pp. 1–16, Aug. 2019.

[5] G. He, Q. Zhang, and Y. Zhuang, “Online semantic-assisted topological
map building with LiDAR in large-scale outdoor environments: Toward
robust place recognition,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12,
2022.

[6] J. Yin, D. Luo, F. Yan, and Y. Zhuang, “A novel LiDAR-assisted
monocular visual SLAM framework for mobile robots in outdoor
environments,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022.

[7] Y. Pan, X. Xu, X. Ding, S. Huang, Y. Wang, and R. Xiong, “GEM:
Online globally consistent dense elevation mapping for unstructured
terrain,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021.

[8] L. Riazuelo, J. Civera, and J. M. M. Montiel, “C2TAM: A cloud
framework for cooperative tracking and mapping,” Robot. Auto. Syst.,
vol. 62, no. 4, pp. 401–413, Apr. 2014.

[9] G. Loianno et al., “A swarm of flying smartphones,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 1681–1688.

[10] D. Zou and P. Tan, “CoSLAM: Collaborative visual SLAM in dynamic
environments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 2,
pp. 354–366, Feb. 2012.

[11] J. G. Morrison, D. Gálvez-López, and G. Sibley, “MOARSLAM: Mul-
tiple operator augmented RSLAM,” in Proc. 12th Int. Symp. Distrib.
Auton. Robot. Syst. Japan: Springer, 2016, pp. 119–132.

[12] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM—Collaborative
visual-inertial SLAM,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 2762–2769, Oct. 2018.

[13] P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli, “COVINS:
Visual-inertial SLAM for centralized collaboration,” in Proc. IEEE Int.
Symp. Mixed Augmented Reality Adjunct (ISMAR-Adjunct), Oct. 2021,
pp. 171–176.

[14] R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping
and tracking,” in Proc. 10th IEEE Int. Symp. Mixed Augmented Reality,
Oct. 2011, pp. 127–136.

[15] S. Lin, J. Wang, M. Xu, H. Zhao, and Z. Chen, “Contour-SLAM:
A robust object-level SLAM based on contour alignment,” IEEE Trans.
Instrum. Meas., vol. 72, pp. 1–12, 2023.

[16] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and
A. Davison, “ElasticFusion: Dense SLAM without a pose
graph,” in Proc. 11th Robot., Sci. Syst., Rome, Italy, Jul. 2015,
pp. 1–9.

[17] X. Liu, W. Ye, C. Tian, Z. Cui, H. Bao, and G. Zhang, “CoxGraph:
Multi-robot collaborative, globally consistent, online dense reconstruc-
tion system,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2021, pp. 8722–8728.

[18] Y. Tian, Y. Chang, F. Herrera Arias, C. Nieto-Granda, J. P. How, and
L. Carlone, “Kimera-multi: Robust, distributed, dense metric-semantic
SLAM for multi-robot systems,” IEEE Trans. Robot., vol. 38, no. 4,
pp. 2022–2038, Aug. 2022.

[19] P. Schmuck and M. Chli, “CCM-SLAM: Robust and efficient central-
ized collaborative monocular simultaneous localization and mapping
for robotic teams,” J. Field Robot., vol. 36, no. 4, pp. 763–781,
2019.

[20] D. Zhu, G. Xu, X. Wang, X. Liu, and D. Tian, “PairCon-SLAM:
Distributed, online, and real-time RGBD-SLAM in large scenarios,”
IEEE Trans. Instrum. Meas., vol. 70, pp. 1–14, 2021.

[21] N. Prieto-Fernández, S. Fernández-Blanco, Á. Fernández-Blanco,
J. A. Benítez-Andrades, F. Carro-De-Lorenzo, and C. Benavides,
“Weighted conformal LiDAR-mapping for structured SLAM,” IEEE
Trans. Instrum. Meas., vol. 72, pp. 1–10, 2023.

[22] Z. Pan, J. Hou, and L. Yu, “Optimization RGB-D 3-D reconstruction
algorithm based on dynamic SLAM,” IEEE Trans. Instrum. Meas.,
vol. 72, pp. 1–13, 2023.

[23] C. Brand, M. J. Schuster, H. Hirschmüller, and M. Suppa,
“Submap matching for stereo-vision based indoor/outdoor SLAM,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2015,
pp. 5670–5677.

[24] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
Fusion: Real-time globally consistent 3D reconstruction using on-the-fly
surface reintegration,” ACM Trans. Graph., vol. 36, no. 4, p. 1,
Aug. 2017.

[25] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM:
A versatile and accurate monocular SLAM system,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[26] J. Niu, Q. Hu, Y. Niu, T. Zhang, and S. Kumar Jha, “Real-time dense
reconstruction of indoor scene,” Comput., Mater. Continua, vol. 68,
no. 3, pp. 3713–3724, 2021.

[27] S. Wen et al., “Dynamic SLAM: A visual SLAM in outdoor dynamic
scenes,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–11, 2023.

[28] X. Wang, C. Olston, A. D. Sarma, and R. Burns, “CoScan: Cooperative
scan sharing in the cloud,” in Proc. 2nd ACM Symp. Cloud Comput.,
Oct. 2011, pp. 1–12.

[29] L. Bartolomei, M. Karrer, and M. Chli, “Multi-robot coordination
with agent-server architecture for autonomous navigation in partially
unknown environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2020, pp. 1516–1522.

[30] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Trans. Robot., vol. 37,
no. 6, pp. 1874–1890, Dec. 2021.

[31] B. A. Lungisani, C. K. Lebekwe, A. M. Zungeru, and A. Yahya,
“Image compression techniques in wireless sensor networks: A sur-
vey and comparison,” IEEE Access, vol. 10, pp. 82511–82530,
2022.

[32] Y. Collet, “Zstandard—Real-time data compression algorithm,” Face-
book, 2023. [Online]. Available: https://github.com/facebook/zstd

[33] D. Galvez-López and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Trans. Robot., vol. 28, no. 5,
pp. 1188–1197, Oct. 2012.

[34] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 573–580.

[35] T. Ma, T. Zhang, and S. Li, “Multi-robot collaborative slam and scene
reconstruction based on RGB-D camera,” in Proc. Chin. Autom. Congr.
(CAC), May 2020, pp. 139–144.

[36] Michael Grupp. (2017). EVO: Python Package for the Evalua-
tion of Odometry and SLAM. [Online]. Available: https://github.com/
MichaelGrupp/evo

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

7504812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Chenle Zuo received the bachelor’s and master’s
degrees in mechanical engineering from the School
of Power and Mechanical Engineering, Wuhan Uni-
versity, Wuhan, China, in 2020 and 2022, where he
is currently pursuing the Ph.D. degree in mechanical
engineering.

His latest research interests include dense mapping
and robot perception.

Zhao Feng received the B.S. and Ph.D. degrees in
mechanical engineering from the School of Power
and Mechanical Engineering, Wuhan University,
Wuhan, China, in 2014 and 2020, respectively.

From 2019 to 2020, he was a Joint Ph.D.
Student at the Department of Electrical and Com-
puter Engineering, National University of Singapore,
Singapore. From October 2020 to October 2022,
he was a Research Fellow sponsored by the UM
Macao Postdoctoral Associateship (UMPA) at the
Department of Electrical and Computer Engineering,

Faculty of Science and Technology, University of Macau, Macao, China.
Since November 2022, he has been an Associate Professor with the School of
Power and Mechanical Engineering, Wuhan University. His current research
interests include mechanical design and precision control of piezoelectric
nanopositioning systems, robot learning, and control.

Xiaohui Xiao (Member, IEEE) received the B.S.
and M.S. degrees in mechanical engineering from
Wuhan University, Wuhan, China, in 1991 and 1998,
respectively, and the Ph.D. degree in mechanical
engineering from Huazhong University of Science
and Technology, Wuhan, in 2005.

She joined Wuhan University, in 1998, where she
is currently a Full Professor with the Mechani-
cal Engineering Department, School of Power and
Mechanical Engineering. She has published more
than 30 articles in the areas of mobile robots, dynam-

ics and control, sensors, and signal procession. Her current research interests
include mobile robotics, robot learning, high-precision positioning control,
and signal processing.

Authorized licensed use limited to: Wuhan University. Downloaded on June 28,2024 at 02:55:22 UTC from IEEE Xplore. Restrictions apply.

