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with application to a piezo
nanopositioner
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Abstract
In precise motion systems, feedforward controller is a key component for significant performance enhancement. However, traditional iterative learning

control (ILC) works efficiently under strictly repetitive reference input, and the performance of model-based feedforward controllers is limited by the

non-minimum phase zeros and modeling uncertainties during executing tasks. In this paper, a model-data integrated ILC is proposed for flexible track-

ing, where the stable part of the identified model is utilized to compose the model-based part, and the modeling error and gain mismatch are compen-

sated by the data-driven approach via constructing a parameterized finite impulse response filter. In order to diminish the effect of noise, an

instrumental variable method is adopted in the cost criterion. The proposed controller has an analytic solution and retains stability during iterations,

which is verified on a piezo nanopositioner. Comparative experimental results indicate that the proposed controller can realize flexible tracking in com-

parison with norm optimal ILC, and achieve the best performance compared with zero-phase-error tracking controller and polynomial basis functions

feedforward controller.
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Introduction

Precise motion tracking plays an important role in many

modern industrial equipment and scientific instruments, espe-

cially at microscale and below. Hence, precise motion control

is essential for applications such as wafer stages (Lan et al.,

2007), atomic force microscopes (AFMs) (Binnig et al., 1986),

information storage (Eleftheriou et al., 2003) and so on. In

general, feedback-only design cannot achieve the best perfor-

mance for the practical and fundamental algebraic restric-

tions (Lee and Salapaka, 2008). The combination of feedback

and feedforward controllers is a promising control scheme,

where the feedback controller is designed to retain stability

and attenuate unknown disturbances and noise, and the feed-

forward controller can compensate the tracking errors and

known disturbances. Therefore, the design of a feedforward

controller is a key component for significant performance

enhancement.
Iterative learning control (ILC) is a popular feedforward

controller for repetitive reference tracking. The tracking errors

are compensated by learning from the previous iterations and

updating the control signal for the next iteration (Bristow

et al., 2006; Freeman et al., 2010; Wang et al., 2013). The con-

vergence property and robustness to uncertainties and distur-

bances have been widely studied in Norrlof and Gunnarsson

(2010), Ahn et al. (2007) and Norrlof (2004). However, a key

assumption for traditional ILC is that the reference signal

should be strictly repetitive (Bristow et al., 2006), and the

change of reference during iterations will deteriorate tracking

performance significantly, and even result in system diver-

gence (Meulen et al., 2008). In this regard, traditional ILC has

lower ability for flexible tracking.
In order to minimize tracking errors and maintain tracking

flexibility simultaneously, different tasks were constructed by

the repeated basic tasks trained via ILC and the optimal con-

trol signal was obtained by fitting the relevant basic tasks or

primitives to realize flexible tracking in Hoelzle et al. (2011)

and Radac et al. (2015). It should be noted that the tracking

references are limited by the numbers of the basic tasks or pri-

mitives. Although providing flexible tracking to some extent,

these methods cannot track arbitrary references.
To improve tracking flexibility further, model-based feed-

forward controllers provide good performance via approxi-

mate inversion of plant, such as high-order feedforward

(Lambrechts, 2005). However, for systems with non-

collocated actuators and sensors, such as nanopositioner,
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where non-minimum phase (NMP) zeros always exist
(Clayton et al., 2009), direct inversion results in unstable feed-
forward controllers. To overcome this problem, some approx-
imate inversion methods have been proposed. These include
zero-phase-error tracking controller (ZPETC) (Tomizuka,

1987), zero-magnitude-error tracking controller (ZMETC)
(Butterworth et al., 2012) and non-minimum-phase zeros
ignore controller (Fujimoto et al., 2001). The performance of
model-based feedforward controllers hinges on the accuracy
of the identified model. However, the variation of plant is
inevitable during executing tasks for complex systems and
modeling error will deteriorate the performance severely for
precise tracking.

The modeling errors can be eliminated by data-driven
methods (Heertjes and Van Engelen, 2011; Janssens et al.,
2013; Kim and Zou, 2013). The control input or parameters
can be obtained via calculating the collected data without the
knowledge of the plant. In Kim and Zou (2013) and Janssens
et al. (2013), the control signals were updated by estimating
the impulse response and nonparametric model in frequency
domain respectively. However, those methods are still sensi-
tive to reference variation. The polynomial basis functions
were employed as the feedforward controller by constructing
the finite impulse response (FIR) filter for flexible tracking
(De Wijdeven and Bosgra, 2010; Meulen et al., 2008).
Although the FIR filter is always stable and exists analytic
solution, it can only approximate the system with finite poles
that is rare in practice for complex dynamic system. On the
other hand, rational basis functions parameterized as an infi-
nite impulse response (IIR) filter were also proposed to
approximate the plant inversion containing both poles and
zeros via ILC (Bolder and Oomen, 2015; Van Zundert et al.,
2016). Despite that the method can capture the dynamics
effectively, the solution is nonanalytic because the structure
of IIR filter is non-convex for optimization. Moreover, the
extra tedious iterations should be processed to obtain the
parameters and the stability cannot be guaranteed.

Hence, it can be concluded that traditional ILC is sensitive

to reference variation, model-based feedforward controllers
have low tolerance on modeling error and the implementation
of ILC with rational basis functions is complex. To tackle
above drawbacks, a model-data integrated ILC for flexible
tracking is proposed in this paper. The poles and stable zeros
are made use of to compose the model-based part and the
modeling error as well as gain mismatch are compensated by
data-driven approach via constructing a parameterized FIR
filter to make an analytic solution. Besides, similar to Boeren
et al. (2015, 2016), an instrumental variable (IV) method is
utilized for unbiased estimation to obtain the optimal para-
meters and diminish the effect of noise. The proposed method
can track varying references and maintain precise tracking
performance simultaneously with the merits of simplification
and practicability for application.

The rest of paper is organized as follows. In ‘Problem for-
mulation’, the problem for flexible tracking is stated. The
design of the proposed controller is described in ‘Model-data
integrated iterative learning control’. Experiments on a piezo
nanopositioner and comparisons of the results are elaborated
in ‘Application to a piezo nanopositioner’ and the
‘Conclusion’ completes the paper.

Problem formulation

System description

A single-input-single-output (SISO), discrete-time and linear
time-invariant system is considered in this paper. The control
scheme is showed in Figure 1. P(z) and Cfb(z) with forward
time-shift operator z indicate the plant and feedback control-
ler. yi is the plant output when the input reference is ri during
the ith iteration. The control force ui is determined by the sum

of the feedforward control signal uffi and feedback control sig-
nal ufbi together. ei is the tracking error and vi is the unknown
noise.

Considering the signal sequences with length N, the system
can also be presented in lifted domain (Bristow et al., 2006).
Take P(z) with a relative degree m, for example. ui(k) is the
input at the time k 2 f0, 1, :::,N � 1g and yi(k) is the output
at the time k 2 fm,m+ 1, :::,N +m� 1g, then the dynamics

of P(z) is equivalent to a N 3 N dimensional lifted matrix with

yi(m)
yi(m+ 1)

..

.

yi(N +m�1)

26664
37775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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=

h(m) 0 ::: 0

h(m+ 1) h(m) ::: 0

..

. ..
. ..

. ..
.

h(N +m�1) h(N +m�2) ::: h(m)

26664
37775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P

ui(0)
ui(1)

..

.

ui(N�1)

26664
37775
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..
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vi(N�1)

26664
37775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
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ð1Þ

where h(k), k 2 fm,m+ 1, :::,N +m� 1g is the impulse
response of P(z), given by

P(z)’h(m)+ h(m+ 1)z�1 + h(m+ 2)z�2 + . . .

+ h(N +m�1)z�(N�1) ð2Þ

and other lifted matrices expressed in bold in this paper are
calculated similarly as P(z).

According to Figure 1, the output and tracking error of
the plant are obtained as

yi =Tri +SPuffi +Svi ð3Þ

ei =Sri � SPuffi�Svi ð4Þ

where S,T and SP are the lifted matrices of sensitive transfer
function S(z)= (1+P(z)Cfb(z))

�1, complementary sensitivity
transfer function T (z)= 1� S(z) and process sensitive trans-
fer function S(z)P(z), respectively. Hence, for repetitive refer-

ence, the error in i+ 1 iteration is denoted as

ei+ 1 =Sri+ 1 � SPuffi+ 1�Svi+ 1 ð5Þ

Figure 1. Block diagram of the feedback-feedforward control scheme.

3202 Transactions of the Institute of Measurement and Control 40(10)



Under the assumption that the noise is equal to zero and

ri+ 1 = ri, the error propagation from the ith to i+ 1th itera-
tion can be expressed as

ei+ 1 = ei � SP(uffi+ 1�uffi) ð6Þ

Norm optimal iterative learning control

Norm optimal iterative learning control (NOILC) is a popu-
lar feedforward controller via minimizing the quadratic criter-
ion of the tracking error and control signal (Gunnarsson and
Norrlof, 2001). The optimal control force is calculated by the

following cost criterion.

Definition 1: The cost criterion for NOILC algorithm is
described as

J1 = ei+ 1k k2
We

+ uffi+ 1k k2
Wu

+ uffi+ 1 � uffik k2
Wdu

ð7Þ

where xk k2
W =WTxW,x 2 RN, We is a N 3 N positive-defi-

nite matrix and Wu,Wdu are N 3 N positive-semidefinite
matrices. The optimal control signal uff� is obtained by

uff�:=arg min
uff2RN

J1 ð8Þ

The solution of equation (8) is given by Theorem 1.

Theorem 1: The analytic solution of NOILC that meets equa-
tion (8) is described as

uff�i+ 1 =QNOuffi +LNOei, with

QNO =((SP)TWe(SP)+Wu +Wdu)
�1((SP)TWe(SP)+Wdu)

LNO =((SP)TWe(SP)+Wu +Wdu)
�1(SP)TWe

8><>:
ð9Þ

Proof: Substitute equation (6) to ∂J1

∂uffi+ 1

� �T
, and it can be

deduced as

∂J1

∂uffi+ 1

� �T

= 2(SP)TWe(SP)uffi+ 1 + 2Wuuffi+ 1 + 2Wduuffi+ 1

�2(SP)TWeei � 2(SP)TWe(SP)uffi � 2Wduuffi ð10Þ

Setting equation (10) to zero and rearranging the solution,
Theorem 1 is obtained.

NOILC can achieve excellent performance when the refer-

ence is strictly repetitive. For We . 0 and Wu = 0,Wdu = 0,
the steady state control force can be found as

uff�=P�1rj ð11Þ

Hence, according to equation (6), the error of next iteration is
demonstrated as

ei+ 1 =Sri+ 1 � SPuff�=Sri+ 1 � Sri ð12Þ

From equation (12), it can be concluded that if the reference

is repetitive, the convergence error is zero, and if ri+ 1 6¼ ri,
the tracking performance will be deteriorated significantly.
That is to say that the traditional ILC cannot handle flexible

tracking perfectly. Besides, the design of NOILC relies on the

accurate model to obtain SP. Although in Janssens et al.

(2013), a data-driven NOILC was proposed without modeling

process, an extra impulse response experiment should be pro-

cessed firstly and the estimation of impulse response is biased.

Control objective

In brief, for flexible tracking with excellent performance, a

model-data integrated ILC is proposed in this paper to allevi-

ate the assumption that the references to track should be same

in traditional ILC. The control object is listed as follows:

(1) The feedforward controller has the ability to track
varying references.

(2) The optimization of the cost criterion has an analytic
solution.

(3) The trial for experiments is minimum and the control-
ler is stable during iterative process.

(4) The estimation of parameters is unbiased, despite that
noise exists.

Model-data integrated iterative learning
control

Feedforward controller parameterization

Similar to model-based feedforward controllers, the control

force uffi should be connected to references ri directly to han-

dle the variation of references. The control scheme of model-

data integrated ILC is illustrated in Figure 2. Hence, the con-

trol force of the feedforward controller is obtained by

uffi =Cff (z)ri ð13Þ

According to equation (5), the error at iteration i+ 1 is calcu-

lated by substituting to equation (13),

ei+ 1 = S(z)(1�P(z)Cff (z))ri+ 1�S(z)vi+ 1 ð14Þ

if the noise is neglected, the error of each iteration will be zero

with Cff (z)=P(z)�1, that is, the inversion of P(z). Therefore,

the object (1) is achieved under the control scheme.
For general model-based controllers, the control perfor-

mance is determined by the accuracy of the identified model

P(z), which is difficult to obtain in practice for complex

dynamics. Hence, the feedforward controller in this paper is

parameterized as a model-data integrated feedforward con-

troller. The identified poles and stable zeros compose the

Figure 2. Control scheme of the proposed controller.
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model-based part and the modeling error as well as gain mis-

match is compensated by data-based approach.
Considering the plant P(z) with NMP zeros, it can be

decomposed into the stable part and unstable part as ZPETC,

P(z)=
Bs(z)Bu(z)

A(z)
ð15Þ

where A(z) contains the identified poles, and Bs(z),Bu(z) are
composed by stable zeros and unstable zeros respectively.
The model-base part is obtained by inverting the poles and

stable zeros in order to stabilize the controller. Therefore, the
model-based part Cmb(z) in Figure 2 is expressed as

Cmb(z)=
A(z)

zdBs(z)
ð16Þ

where d is the difference between poles and stable zeros to
make Cmb(z) causal. Being different from the design of
ZPETC, a data-based FIR filter is adopted to compensate the

NMP zeros caused inversion error and model uncertainties
through iteration. The structure of data-based part is
expressed in Definition 2.

Definition 2: The feedforward controller of the data-based

part Cdb(z,ui) parameterized as a FIR filter structure is
defined as

Cdb(z, ui)=
Xn

j= 1

ui½j�z
�j ð17Þ

here, ui 2 Rn is the parametric vector of the FIR filter coeffi-
cients. In lifted domain, equation (17) can also written as

Cdb(ui)=
Xn

j= 1

cjui½j� ð18Þ

where cj is the lifted matrix of z
�j

, which indicates the j-step
time delay for the input signal.

Therefore, according to Figure 2, the model-data inte-
grated feedforward controller Cff (z,ui) and feedforward con-
trol force uffi are parameterized as

Cff (z, ui)=Cdb(z,ui)Cmb(z) ð19Þ

uffi =Cff (z,ui)ri ð20Þ

The parameters are linear to Cff (z,ui) from equation (17)
and equation (18). Hence, the optimization problem with
quadric form is convex. Besides, the stable part of identified
model and data-based part with FIR filter structure always

guarantee the stability of the proposed controller so that the
object (2) and (3) are realized.

Parameters optimization

To obtain the parameters in equation (18), a data-based
method is adopted to optimize the tracking performance.
Substituting equation (19) to equation (3), the output in the
ith iteration is given as

yi =SP(Cfb +Cff(ui))ri +Svi ð21Þ

Assuming that vi = 0, equation (21) can be rewritten as

cSPri =(Cfb +Cff(ui))
�1yi =C(ui)

�1yi ð22Þ

where cSP means the estimation of SP with the measured data

yi and C(ui) is the lifted matrix of C(z)=Cfb(z)+Cff (z, ui).

Hence, the estimated error of next iteration is obtained by

bei+ 1(ui+ 1)= ei � (Cff(ui+ 1)�Cff(ui))C(ui)
�1yi ð23Þ

Furthermore, the term C(ui)
�1yi can be deemed as the sig-

nal yi filtered by C(z)�1. However, C(z)�1 may be unstable

during iterative process. A technology introduced in Kinosita
et al. (2002) is used in this paper that separates the stable and

unstable mode of C(z)�1, as expressed in equation (24)

C(z)�1 =C(z)�1
stable +C(z)�1

unstable ð24Þ

which can be obtain by stabsep command in MATLAB. The

stable part C(z)�1
stable is used to filter the forward time of yi, and

the unstable part C(z)�1
unstable is used to filter the negative time

of yi, which can be calculated off-line after each iteration. In

the following section, the signal yi filtered by C(z)�1 is calcu-

lated by the above method.
It should be noted that equation (23) only contains the

measured signals without the plant information. However,

the noise always exists in the closed-loop system, such as the

quantization noise of sensors, which will result in a biased

estimation of ui (Boeren et al., 2015). Hence, an instrumental

variable (IV) method (Ljung, 1999) is utilized for an unbiased

estimation. The cost criterion with IV is defined as follows.

Definition 3: The cost criterion to obtain optimal parametric

vector is given as

J2(ui+ 1)= WTbei+ 1(ui+ 1)
�� ��2

We
+ uffi+ 1(ui+ 1)k k2

Wu
+

uffi+ 1(ui+ 1)� uffik k2
Wdu

ð25Þ

where W 2 RN 3 n is the IV.
The selection of W is important to estimate the optimal

parameters. In general, W should be uncorrelated with noise

vi, and correlated with ui and yi. Hence, in this paper, W is

chosen as,

W= ½c1ri,c2ri, :::,cjri� ð26Þ

And the object (4) is achieved via equation (26).

Model-data integrated control law

The control law is calculated by minimizing the cost criterion

J2(uj+ 1) to get

u�:¼argmin
u2Rn

J2(ui+ 1) ð27Þ

The analytic solution of equation (27) is given by Theorem 2.

3204 Transactions of the Institute of Measurement and Control 40(10)



Theorem 2: The control law of model-data integrated ILC is

demonstrated as

ui+ 1 =QMDI ui +LMDI ei, with
H=(WTCmbcC(z)�1, yi

)TWTWeCmbcC(z)�1, yi

+(Cmbcri
)TWu(Cmbcri

)+ (Cmbcri
)TWdu(Cmbcri

)

QMDI=Hn((WTCmbcC(z)�1, yi
)TWTWeCmbcC(z)�1, yi

+(Cmbcri
)TWdu(Cmbcri

))

LMDI=Hn((WTCmbcC(z)�1, yi
)TWTWe)

8>>>>>>><>>>>>>>:
ð28Þ

where C(z)=Cfb(z)+Cff (z, ui), cC(z)�1 , yi
= ½c1C(z)�1yi,

C(z)�1yi, :::,cjC(z)�1yi�, and cri
= ½c1ri,c2ri, :::,cjri�.

Proof: Substitute equation (23) to Definition 2, and use the
following equation

∂( Ax+ bk k2
Q)

∂x
= 2(Ax+ b)TQA ð29Þ

where x, b 2 Rn,A 2 RN 3 N and Q=QT 2 RN 3 N . By expres-
sing as lifted matrices and differentiating J2(ui+ 1) with
respect to ui+ 1, it is obtained that

1

2

∂J2(ui+ 1)

∂ui+ 1

� �T

= � (WTCmbcC(z)�1 , yi
)TWT

We(ei � CmbcC(z)�1 , yi
(ui+ 1 � ui))

+ (Cmbcri
)TWu(Cmbcri

)ui+ 1 +(Cmbcri
)T

Wdu(Cmbcri
)(ui+ 1 � ui) ð30Þ

Setting the above equation to zero and rearranging the

terms ui+ 1,ui and ei, Theorem 2 is obtained in lifted domain.
Therefore, the closed-loop transfer function from ri+ 1 to

yi+ 1 can be expressed as

Gcl(z)=
P(z)(Cff (z, ui+ 1)+Cfb(z))

1+P(z)Cfb(z)
ð31Þ

It should be noted that the stability of Gcl(z) is guaranteed
if all poles of 1+P(z)Cfb(z) lie in the unit circle because equa-
tion (30) results in the convergence of ui+ 1 and a stable

Cff (z,ui+ 1).
Combining the above results, the following design proce-

dure is proposed for flexible tracking, which represents the

main contributions of this paper.
Procedure 1: The feedforward controller Cff (z, ui+ 1) is

obtained by the following steps:

(1) By identifying the plant, Cmb(z) is obtained according
to equations (15) and (16). Set the initial value of u0

to zero.
(2) Collect the measured signals ei and yi.
(3) Calculate cC(z)�1,yj

=½c1C(z)�1yi,C(z)�1yi,:::,cjC(z)�1yi�
and construct instrumental variable W by equation
(26).

(4) Calculate ui+ 1 based on Theorem 2.
(5) Construct the feedforward controller

Cff (z, ui+ 1)=
Pn

j= 1

ui+ 1½j�z
�j

 !
Cmb(z).

(6) Set i to i+ 1, and repeat step (2) to step (5).

Simulation case

To verify the proposed controller preliminarily, a two-mass

spring motion system in Boeren et al. (2015) is used for simu-

lation. A fourth-order reference trajectory (Lambrechts,

2005) is adopted and the nominal reference is plotted in

Figure 3. Ten difference references were performed with the

parameters: rmax = 12;14rad, vmax = 9000;10000rads�1,

amax = 9000;10010rads�2, jmax = 23;25rads�3, which were

generated randomly and the reference changed after each

iteration. The sample rate is 1000Hz and the noise with stan-

dard deviation of 0.002rad was injected into the simulation

model.
In order to evaluate the performance of the proposed con-

troller, the following four feedforward controllers were used

for comparison:

(1) C1: model-based feedforward controller ZPETC
(Tomizuka, 1987).

(2) C2: NOILC (Bristow et al., 2006) in Theorem 1.
(3) C3: polynomial basis functions feedforward controller

in Boeren et al. (2015).
(4) C4: model-data integrated ILC proposed in this

paper.

Figure 4 shows the results of the Root-Mean-Square (RMS)

errors and maximal (MAX) errors of 10 iterations with n=4.

For C1, C3 and C4, the iterative curves are smooth from i=2 to

i=10, whereas the curves with C2 shake fiercely because tradi-

tional ILC could not handle the varying references. Although C1

is not sensitive to the change of reference, the performance is still

limited by the NMP zeros of the plant which results in an

approximate inversion. According to Figure 5, the performance

of C4 is superior to C3 because the structure of C4 is an IIR filter

that contains both zeroes and poles to capture the resonance

peak at 29.3 Hz and anti-resonance peak at 16.3 Hz. However,

C3 can only approximate the lower frequency range, which dete-

riorates the performance.

Application to a piezo nanopositioner

Experimental setup

A three-axis piezo nanopositioner (P-561.3CD, Physik

Instrumente) was used for experiments. To perform the four

Figure 3. Nominal fourth-order reference trajectory.
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controllers, only the x axis with a stoke of 100mm was experi-

mented for comparison. The control input voltage (0–10 V) is

produced by 16-bit digital to analog converters (DACs) of

the data acquisition card (PCI 6289, National Instrument) for

the piezo amplifier module with a fixed gain 10 (E-503.00,

Physik Instrumente) and the sensor data is collected by the

data acquisition card (PCI 6289, National Instrument)

equipped with 18-bit analog to digital converters (ADCs)

through sensor monitor (E-509.C3A, Physik Instrumente).

The controllers were designed in Matlab/Simulink on develop

PC and implemented on the target PC in real-time after com-

piling. The sampling frequency of the system is set to 10 kHz.

Figure 6 shows the experimental setup.

In order to identify the system, a set of 100mV swept sine

waves between 0.1Hz and 500Hz were applied to the x axis. It
should be noted that a low amplitude signal was used in order

to minimize the hysteresis nonlinearity. A continuous transfer

function was obtained by invfreqs command in MATLAB,

and discretized via zero-order holder (ZOH) method. The

transfer function of P(z) is given by

P(z)=
0:011003(z� 0:9967)(z2 � 2z+ 0:9996)(z2 � 1:7z+ 0:9532)(z2 � 2:03z+ 5:045)

(z� 0:796)(z� 0:9969)(z2 � 2z+ 0:9995)(z2 � 1:418z+ 0:6218)(z2 � 1:544z+ 0:9635)
ð32Þ

Figure 7 shows the match between the measured and iden-

tified open-loop frequency response. Besides, it is clear that a

Figure 6. The experimental setup of nanopositioner (a) Experimental platform (b) Block diagram.
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Figure 5. Bode diagram of nominal model and inversion of C3,C4 at the

10th iteration in simulations.

Figure 4. RMS and MAX errors in simulations.
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pair of NMP zeros exists according to equation (32), which is

common in nanopositioning system. Therefore, the model-

based part of the proposed controller was obtained by the

poles and stable zeros in equation (32), given by

Cmb(z)=
(z� 0:796)(z� 0:9969)(z2 � 2z+ 0:9995)(z2 � 1:418z+ 0:6218)(z2 � 1:544z+ 0:9635)

z3(z� 0:9967)(z2 � 2z+ 0:9996)(z2 � 1:7z+ 0:9532)
ð33Þ

To deal with the low-gain margin of nanopositioning sys-

tem, a notch filter to suppress the effect of the dominant reso-

nant peak was implemented for the cascade of a high-gain

proportion-integration (PI) controller that can be used to

account for hysteresis and creep nonlinearity. Three references

defined for experiments are shown in Figure 8. r1 is a 10 Hz

triangular wave with the peak-to-peak amplitude of 1.5mm.

The amplitude of r2 expand 1/3 times relative to r1, that is,

2mm and r3 is equal to r2 with 0.01s delay. The amplitude is

small so that the system behaver is approximately linear.

Results of tracking fixed reference

Eight iterations were performed for fixed reference tracking

with reference r2. For C3 and C4, the order of FIR filters were

chosen as n=4, and the initial value of u0 was set to zero so

that the results of the first iteration is with feedback control-

ler only.
The RMS and MAX errors versus iteration are shown in

Figure 9. The tracking performance with feedback controller

only was the worst with the RMS error of 0.3386mm and

MAX error of 0.4844mm for the phase delay and no ability to

compensate repetitive errors. The errors of the last iteration

were plotted in Figure 10 and the statistical results at 8th itera-

tion were listed in Table 1. For feedforward controllers, the

errors of C1 were the largest because it was designed by

model-based method and there were no parameters changing

during iterations so that the modeling error cannot be com-

pensated. C2 achieved the best performance with RMS error

of 5.88nm and MAX error of 25.48nm respectively. It should

be noted that compared to C3 with n=4, for repetitive refer-

ence tracking, C2 can be viewed as the FIR filter with n=N.

Figure 7. The measured and the identified model amplitude frequency

responses.

Figure 9. RMS and MAX errors of fixed reference tracking.

Figure 8. Varying references for experiments.

Table 1. Statistical results of fixed reference tracking at the 8th

iteration.

Controller RMS Errors(nm) MAX Errors(nm)

C1 49.65 138.70

C2 5.88 28.45

C3 30.80 99.03

C4 16.01 62.17
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For the proposed controller C4, the RMS error was 16.01nm

and the MAX error was 62.17nm, which outperform the per-

formance of C3 for the structure of IIR filter that can approxi-

mate the dynamics more accurately than FIR filter. However,

C2 can achieve the best performance with fixed reference

tracking for the characteristic of improving the system

bandwidth, which can be concluded from Figure 10, where

the errors of C2 are minimum although at the corner of trian-

gular wave.

Results of tracking varying references

To demonstrate the ability of flexible tracking of the pro-

posed controller, 15 iterations were conducted in experi-

ments with four different controllers. The references were

shown in Figure 8, where the input signals were r1, r2 and r3
between the 1st iteration and 5th iteration, 6th iteration and

10th iteration, 11th iteration and 15th iteration, respectively.

Similar to fixed reference tracking, the order of FIR filter

was chosen as n=4 for C3 and C4, and the initial value of

u0 was set to zero.
The tracking results were demonstrated in Figure 11 and

Figure 12. The statistical results were listed in Table 2. It is

clear that the four controllers improve the performance signif-

icantly compared with feedback controller only at the 1st

iteration. C2 is sensitive to the change of references, which

can be concluded in Figure 11, where the RMS errors change

from 6.01nm to 78.93nm at the 5 iteration and 6th iteration,

from 5.77nm to 234.20nm at the 10th iteration and 11th itera-

tion because the control signal of tradition ILC determined

by errors of previous iterations only have no connection with

references. C1, C3 and C4 have the ability to handle varying

references according to Figure 11 and Figure 12. Note that

the errors between the 6th iteration and 10th iteration increase

lightly for the reference amplitude changing from 1.5mm to

2mm. The performance of C1 is deteriorated by the NMP

zeros in the plant and model uncertainties during iterations.

For C3 and C4, taking the 5th iteration as example, C4

achieved the performance with RMS errors of 10.64nm and

MAX errors of 42.23nm compared with 23.75nm and

74.23nm for C3 respectively. The proposed model-data inte-

grated IIR filter structure outperform the FIR filter structure

and can achieve precision flexible tracking simultaneously.
In the perspective of frequency domain, Figure 13 showed

the bode diagram of the nominal model and the inversion of

C3 and C4 at the 15th iteration. It demonstrates that C4 can

capture the resonance peak at 212 Hz and the anti-resonance

peak at 160 Hz for the contained zeros and poles, whereas C3

can only approximate the lower frequency that deteriorates

the performance.

Figure 11. RMS and MAX errors of varying references tracking.

Table 2. Statistical results for varying references.

Controller RMS Errors(nm) MAX Errors(nm)

e5 e6 e10 e11 e5 e6 e10 e11

C1 34.70 51.72 50.76 50.46 95.67 139.70 150.90 142.10

C2 6.01 78.93 5.77 234.20 25.35 137.40 30.34 677.90

C3 23.75 31.05 31.71 31.37 74.50 109.90 99.50 91.03

C4 10.64 17.84 17.85 18.01 42.23 77.86 69.52 70.50

Figure 10. Tracking errors of fixed reference at the 8th iteration.
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Conclusion

In this paper, a model-data integrated ILC was developed to

track varying references for precise motion systems with com-

plex and NMP dynamics. Compared with pure model-based

feedforward and data-based controller, the proposed method

takes full advantage of the information of identified model to

compose model-based part and the collected data to get opti-

mal parameters of the data-based FIR filter. The effect of

noise was reduced through implementing IV method and the

feedforward controller is stable during iterations. The perfor-

mance was verified through simulation, which shows that the

proposed controller can handle the problem of flexible track-

ing effectively. The controller was also implemented on a

piezo nanopositioner. The experimental results demonstrate

that NOILC achieved the best performance for fixed refer-

ence, whereas the tracking errors increase when the reference

changing. For varying references tracking, the performance

of proposed controller outperforms ZPETC for the compen-

sation of modeling error via collected data and polynomial

basis functions feedforward controller for the structure of IIR

filter that can approximate the inverse plant dynamics accu-

rately. The future work will concentrate upon the improve-

ment of tracking bandwidth, such as minimizing errors at the

corner of triangular wave and realizing flexible tracking on

multiple-input-multiple-output (MIMO) systems.
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