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Task Attention for Individual SSVEP Recognition
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Abstract— Objective: Recently, artificial neural networks
(ANNs) have been proven effective and promising for the
steady-state visual evoked potential (SSVEP) target recog-
nition. Nevertheless, they usually have lots of trainable
parameters and thus require a significant amount of cal-
ibration data, which becomes a major obstacle due to
the costly EEG collection procedures. This paper aims to
design a compact network that can avoid the over-fitting
of the ANNs in the individual SSVEP recognition. Method:
This study integrates the prior knowledge of SSVEP recog-
nition tasks into the attention neural network design.
First, benefiting from the high model interpretability of
the attention mechanism, the attention layer is applied
to convert the operations in conventional spatial filtering
algorithms to the ANN structure, which reduces network
connections between layers. Then, the SSVEP signal mod-
els and the common weights shared across stimuli are
adopted to design constraints, which further condenses the
trainable parameters. Results: A simulation study on two
widely-used datasets demonstrates the proposed compact
ANN structure with proposed constraints effectively elimi-
nates redundant parameters. Compared to existing promi-
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nent deep neural network (DNN)-based and correlation
analysis (CA)-based recognition algorithms, the proposed
method reduces the trainable parameters by more than 90%
and 80% respectively, and boosts the individual recogni-
tion performance by at least 57% and 7% respectively. Con-
clusion: Incorporating the prior knowledge of task into the
ANN can make it more effective and efficient. The proposed
ANN has a compact structure with less trainable parame-
ters and thus requires less calibration with the prominent
individual SSVEP recognition performance.

Index Terms— Artificial neural network, attention layer,
brain-computer interface, steady-state visual evoked
potential.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) provide the direct
communication channels between human intentions and

computer commands, and have found numerous applica-
tions and received increasing attention [1], [2], [3]. Due
to high signal-to-noise ratios (SNRs) and high information
transfer rates (ITRs), the steady-state visual evoked poten-
tial (SSVEP)-based BCI becomes the most prominent BCI
paradigm [4], [5], [6].

Recognition method plays the important role of the per-
formance in the SSVEP-based BCIs. Currently, the corre-
lation analysis (CA)-based methods are widely applied for
the SSVEP recognition and have achieved superior perfor-
mance [7], [8], [9], [10]. These CA-based methods measure
the similarities between the SSVEP reference or template
signals and the weighted summation of multi-channel EEG
signals, and classify the stimulus with the largest similar-
ity as the target, where the weights of EEG channels are
known as spatial filter [4]. One major difference between
various CA-based methods is the type of reference or tem-
plate signals: 1) The sine-cosine signals are widely used as
the SSVEP reference signals, which was introduced in the
standard canonical correlation analysis (sCCA) method [7],
[8], [11], [12], [13], [14]; 2) The well-known template sig-
nals are the average calibration signals, which eliminates
the interference from spontaneous EEG activities [8], [9],
[10]. Another major difference between CA-based methods
is the concatenating ways of the processed signals as well
as the template or reference signals for determining spatial
filters [4]: 1) In the sCCA, the individual template based CCA
(itCCA) and the extended CCA (eCCA), the stimulus-specific
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spatial filters are computed independently for different stim-
uli to maximize the correlation between the recorded EEG
signals and the reference or template signals [7], [8], [15],
[16]; 2) The multi-stimulus eCCA (ms-eCCA) concatenates
reference and template signals of neighbor stimuli to calcu-
late common spatial filters of multiple stimuli, and achieves
superior performance [10]; 3) The task-related component
analysis (TRCA), the ensemble TRCA (eTRCA), and the
corresponding multi-stimulus scheme, namely multi-stimulus
eTRCA (ms-eTRCA), consider the variances of different trials
to further increase the recognition performance [9], [10];
4) The task discriminant component analysis (TDCA) uses
the discriminant analysis to consider the variances of different
trials, includes the commonality of spatial filters to reduce
the redundancy of spatial filters in (e)TRCA, and augments
EEG data by including delayed signals as extra channels to
expand the spatial filter to the spatio-temporal filter, which
leads to the state-of-art performance [17]. Although these
CA-based methods can provide the prominent performance,
they compute the spatial weights without considering the
recognition results, easily leading to non-optimized spatial
filters. In addition, they only focus on exploring the spatial
weights. The weights of other domains including the temporal
and spectral domains are pre-defined, or trained individually
with spatial filters, which may produce the error accumulation
and thus reduce the performance.

Recently, several ANN based SSVEP recognition algorithms
have been proposed. These algorithms provide the new per-
spectives of investigating SSVEP characteristics to overcome
the issues of conventional CA-based algorithms. They
achieve the end-to-end optimization of all model parameters
simultaneously, which provides the global optimization and
avoid the error accumulation [6], [18], [19], [20], [21],
[22], [23]. The early studies are preliminary and limited by
small number of targets. Several convolution neural network
(CNN) and recurrent neural network (RNN) architectures
were proposed to classify four or five stimulus targets,
and can outperform the sCCA method and the conventional
classifiers [18], [19], [21]. Recently, several DNN models were
proposed for recognizing the large number of targets. As the
number of targets increases, the calibration data sizes required
by these DNN models also become prohibitively large. Guney
et al. proposed one prominent DNN structure, which is termed
as Guney-DNN in this study [6]. The Guney-DNN was firstly
pre-trained over the calibration data from all subjects and
then fine-turned for each subject. Another outstanding DNN
structure, i.e., convolutional correlation analysis (Conv-CA),
introduced in [22] only requires individual calibration data
but still needs very long (full 5s) calibration data of all targets
in all training blocks. The Guney-DNN and the Conv-CA
both have been verified in the 40-stimulus-target SSVEP
classification and can provide the state-of-art performance for
the SSVEP recognition. Nevertheless, these DNN structures
do not consider prior knowledge in conventional successful
CA-based methods and SSVEP signal models, and thus
contain lots of trainable parameters. Therefore, they require
a large amounts of calibration signals from multiple subjects
or with long signal lengths to avoid the over-fitting and

the corresponding performance deterioration [24], [25].
In practical systems, because the calibration process is
laborious and costly, such large and cross-domain calibration
data is hard to be collected [10], [14], [26], [27], [28],
[29]. Consequently, improving the practicality and the user
experience of the SSVEP-based BCI systems poses a great
challenge on distinguishing a large number of targets with
small size, short and subject-specific calibration data.

This study explores the feasibility of adopting the prior
knowledge of SSVEP tasks, including the SSVEP reference/
template signals, the commonality of spatial filters, and the
computations of spatial filters successfully used in these
CA-based methods, to reduce the trainable parameters in
the ANNs, and thus avoid the over-fitting issue. Moreover,
the attention mechanism is adopted to design the network
structure, which incorporates operations in conventional spatial
filtering algorithms with the ANN architecture to reduce
the connection numbers between layers. Inspired by the
human attention, the attention layer makes the correspond-
ing models concentrate on the most important information,
which is similar as the idea behind the spatial filtering algo-
rithms [30]. The spatial filtering algorithms and the attention
layer both adopt weights to define the importance. The spa-
tial filtering algorithms focus on exploring the importance
of spatial information, and the attention layer explores the
importance of information in multiple domains simultaneously.
The attention-based ANNs have been adopted in various
tasks, and demonstrated the superior performance, such as
the image caption [31], the machine translation [32], the
object detection [33], the action and facial expression recogni-
tion [34], [35]. The channel-wise and sample-wise attentions
were widely adopted to explore the spatial dependence and the
temporal dependence for the EEG signal decoding [30], [36],
[37], [38], [39]. However, to our best knowledge, the relation-
ships between the attention architecture and the conventional
spatial filtering algorithms have not been explored in existing
studies and have not been applied for the individual SSVEP
recognition.

Compared to the conventional spatial filtering algorithms,
the proposed ANN architecture is an end-to-end recognition
model. It explores the importance of information in multiple
domains including the temporal, spatial, feature, and spec-
tral domains, and optimizes all trainable parameters simul-
taneously. Compared to the existing ANNs for the SSVEP
recognition, the proposed ANN architecture incorporates prior
knowledge of SSVEP tasks, including the SSVEP reference/
template signals, the commonality of spatial filters across stim-
uli, and the operations in conventional spatial filtering algo-
rithms, to condense trainable parameter dimensions and thus
reduce the required calibration data size, making it suitable for
the individual SSVEP recognition. Simulations conducted on
two widely-used datasets show that the proposed ANN archi-
tecture outperforms the prominent CA-based and DNN-based
methods, i.e., eCCA, TRCA, eTRCA, Guney-DNN, and
Conv-CA, under the limited size of individual calibration data.

In the following Section II and Section III, we provide the
preliminaries and introduce the proposed task attention based
individual SSVEP recognition method. After we present the
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performance evaluation in Section IV and the discussions in
Section V, the conclusion is given in Section VI.

II. PRELIMINARIES

A. Unified Framework of Spatial Filtering Algorithms and
Ensemble Technique of eCCA

By leveraging the frequency- and phase-locking character-
istics of the SSVEP signals, the SSVEP-based BCIs encode
commands by visual flickers with different flashing frequen-
cies and phases, and decode users’ intentions by identify-
ing dominant frequency components [5]. In the conventional
SSVEP recognition methods, the core process is to determine
the suitable spatial filters that combine EEG signals in multiple
channels to improve the signal quality. The obtained spatial
filters can enhance the SNRs and protects the extraction of
reliable features. Wong et. al summarized various prominent
spatial filtering algorithms [4], and unified them as a general-
ized eigenvalue problem (GEP) that is

DTT TDT WT
= BWT 1, (1)

where D denotes processed EEG signals, W denotes the
eigenvectors and works as the spatial filters, 1 denotes the
corresponding eigenvalues, B is the covariance matrix of D,
and T denotes the temporal filter that is pre-defined and
computed by the SSVEP reference/template signals.

In addition to the spatial filter approach, the ensemble
technique used in the eCCA also can significantly improve
the recognition performance, and widely used in the SSVEP
recognition algorithms [8], [10], [16], [29]. The eCCA com-
bines the ideas of the sCCA and the itCCA. It finds 3 types
of spatial filters by solving (1) with SSVEP reference and
template signals respectively: 1) D = X and T = QRi ,
2) D = X and T = QXi

, as well as 3) D = Xi and T = QRi ,
where X denotes the EEG signals that need to be recognized,
Ri and Xi denote the SSVEP reference and template signals
respectively, as well as QRi and QXi

denote the orthogonal
matrices obtained from the QR factorization of Ri and Xi
respectively. Then, the eCCA ensembles all results obtained
by these spatial filters [16].

B. SSVEP Reference and Template Signals
According to the hypothesis that the SSVEP signals are

the output of a linear system with the corresponding stimulus
signals as the input, the well-known SSVEP reference signal
is a set of sine-cosine signals, which can be presented as

Ri =


sin (2π fi t + θi )

cos (2π fi t + θi )
...

sin (2π Nh fi t + Nhθi )

cos (2π Nh fi t + Nhθi )

 , (2)

where Nh denotes the total number of harmonic components.
To avoid the interference from the spontaneous EEG activ-

ities, the individual templates constructed by calibration data
are also commonly applied for the SSVEP recognition. The

widely used SSVEP template is the average signal of all
calibration trials, which can be expressed as

Xi =
1

Nt Nb

Nb∑
nb=1

Nt∑
nt =1

Xi,nb,nt , (3)

where Xi,nb,nt denotes the calibration data of the i-th stimulus
in the nt -th calibration trial of the nb-th training block, Nt
denotes the number of calibration trials in one training block,
and Nb denotes the total number of training blocks.

C. Scaled Dot-Product Attention
An attention function can be described as the weighted

summation of correlations of the queries and the keys, where
the weights are the corresponding values [40]. In practice, the
scaled dot-product attention architecture was proposed in [32].
Specifically, the output of the attention layer can be computed
as

Attention (Q, K, V) = softmax
(

QKT
√

dK

)
V, (4)

where Q, K, V denote the packed sets of queries, keys, and
values, and dK is the dimension of keys. The structure of the
scaled dot-product attention is illustrated in Fig. 1(a).

D. Statistical Analysis Method
To evaluate the significance of the performance differences

between recognition methods, trainable parameter numbers,
training block numbers, and channel numbers, the paired t-test
is applied, while the p-values are corrected by the Bonferroni
correction [6]. For the N paired t-tests containing total N
comparisons, we denote the significance of an observed dif-
ference as “*” if the p-value is less than 0.05/N , “**” if the
p-value is less than 0.01/N , “***” if the p-value is less than
0.001/N , and “n.s.” if the p-value is larger than 0.05/N .

III. MATERIALS AND METHODS

A. SSVEP Datasets
The proposed ANN architecture is validated on two public

datasets:
1) The benchmark dataset was collected from 35 healthy

subjects participating in the SSVEP-based BCI experi-
ment [41]. This experiment uses a 40-target BCI speller
and a sampled sinusoidal stimulation method to present
visual stimuli where the luminance of the screen is
controlled by the stimulus sequence sampled from 0.5+

0.5 sin (2π fi t + θi ) where fi and θi denote the stimulus
frequency and phase of the i-th stimulus, respectively.
The stimulus frequencies start from 8Hz to 15.8Hz
with 0.2Hz interval. The stimulus phases range from
0 to 1.5π with 0.5π interval. All stimuli have the
same size and are evenly distributed. This experiment
includes 6 blocks, with each block consisting of 40 trials
corresponding to 40 stimuli. Every trial starts with a
0.5s target cue. Then, all stimuli are flickered on the
screen for 5s. Finally, the screen goes blank for 0.5s
break before next trial.
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Fig. 1. Attention architectures. (a) Scaled dot-product attention.
(b) Proposed task attention.

2) The BETA dataset was recorded from 70 healthy sub-
jects [42]. The stimulus design is similar as that in
the benchmark dataset, but the stimuli are distributed
as the traditional QWERT keyboard. Each experiment
consists of 4 blocks. The stimulation lasts 2s for the
first 15 subjects and 3s for the remaining subjects.
Because the experiments are conducted outside of the
laboratory, the signal qualities are lower than that in
the benchmark dataset, leading to more challenges of
the target recognition in the BETA dataset.

EEG signals of these two datasets were recorded from
64 channels and down-sampled to 250Hz. A notch filter
at 50Hz was applied to remove the power-line noise. EEG
data in each trial were filtered using a band-pass filter with
the lower and higher cut-off frequencies of 7Hz and 90Hz,
respectively. The average visual latencies are approximately
estimated as 0.14s in the benchmark dataset and 0.13s in the
BETA dataset [41], [42].

B. Task Attention Architecture
The proposed task attention architecture illustrated in

Fig. 1(b) integrates (1) and (4) together. It contains three layers
for the i-th stimulus:

1) The first layer acts as the temporal filtering in the con-
ventional SSVEP recognition methods, which is called
temporal filtering layer in this study. The temporal
filtering layer measures the similarities of the processed
EEG signals X and the kernels Yi , which is similar
as the multiplication of the queries Q and the keys K
in the scaled dot-product attention shown in Fig. 1(a).
The queries and the keys in a conventional self-attention
architecture are projected from the input, where the
projection matrices are learned from the training pro-
cess. On the contrary, according to the frequency- and
phase-locked characteristics of the SSVEP signals and
the unified framework of the spatial filtering algorithms,
the kernels of the proposed first layer are pre-defined
as the SSVEP reference and/or template signals to
reduce the number of trainable parameters.

2) The second layer computes the channel-wise weights Wi
of the outputs from the first layer, which is called spatial

filtering layer in this study. The channel-wise weights
are similar as values V of the attention layer shown in
Fig. 1(a). The values in the conventional self-attention
are also projected from the input but the channel-wise
weights in the spatial filtering layer are trained by the
calibration signals.

3) After combining temporal features across channels in the
second layer, the third layer explores the importance of
these combined features inspired by the unified frame
work of spatial filtering algorithms. The feature-wise
weights Vi work similar as the channel-wise weights
Wi but are performed on different dimensions, and are
also optimized by the calibration data.

It should be noted that, due to the time-varying charac-
teristics of EEG signals, the ranges of these features may be
varied in different trials, and thus should be scaled to a unified
range. Following the unified framework of the spatial filtering
algorithms, such scaling operation is operated after the third
layer in this study.

C. Multi-Head Task Attention Architecture
Following the ensemble technique of the eCCA introduced

in Section II-A, this study proposes to use the multi-head
task attention layer, instead of one single attention layer. The
multi-head task attention layer is similar as the multi-head
attention proposed in [32]. It incorporates multiple task atten-
tion layers with different kernels in the temporal filtering layer
as well as different trainable weights in the spatial filtering
layer and the feature combination layer, which jointly projects
SSVEP signals into different representation subspaces and then
properly combines the information in these subspaces. The
whole architecture is shown in Fig. 2(a).

In the temporal filtering layer of the i-th stimulus, both
SSVEP reference signals Ri ∈ RH×T and SSVEP template
signals Xi ∈ RC×T are applied as kernels Yi , where C , H ,
and T denote the EEG channel number, the harmonic number,
and the sampling number. The projected temporal features of
the input signal X ∈ RC×T can be expressed as

F(ref)
i = XRT

i ∈ RC×H and F(temp)
i = XXT

i ∈ RC×C . (5)

Four pairs of trainable weights in the spatial filtering layer
and the feature combination layer explores the importance
of the spatial and feature-based information from different
aspects. The first pair of trainable weights Wi,1 and Vi,1 is
based on two assumptions: 1) The spatial weights of F(ref)

i and
F(temp)

i are same; 2) The spatial distributions of the recorded
EEG signals and the template signals are same. This pair
of trainable weights leads to two outputs from the feature
combination layer, which can be represented as

Oi,1 =
Wi,1F(ref)

i VT
i,1√

Di,1
and Oi,2 =

Wi,1F(temp)
i WT

i,1√
Di,2

. (6)

Two assumptions for the second and third pairs of trainable
weights Wi,0 and Vi,0 as well as Wi,2 and Vi,2 are opposite
to the assumptions of the first pair of trainable weights:
1) The spatial weights of F(ref)

i and F(temp)
i are independent;

2) The spatial distributions of the recorded EEG signals and
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Fig. 2. Proposed ANN architecture. (a) Multi-head task attention. (b) Task attention based SSVEP recognition architecture. (c) Task attention based
SSVEP recognition with filter-bank approach.

the template signals are also independent. Based on these
assumptions, two outputs can be expressed as

Oi,0 =
Wi,0F(ref)

i VT
i,0√

Di,0
and Oi,3 =

Wi,2F(temp)
i VT

i,2√
Di,3

. (7)

The fourth pair of trainable weights Wi,3 and Vi,3 assume that
the spatial distributions of the recorded EEG signals and the
template signals are same and not related to the spatial weights
of F(ref)

i . The corresponding output can be computed as

Oi,4 =
Wi,3F(temp)

i WT
i,3√

Di,4
. (8)

Inspired by the unified framework of the spatial filtering
algorithms, the scaling factors

{
Di,d

}
d=0,1,2,3,4 are calculated

by the variances of the input EEG signal and the corresponding
reference or template signals:

Di,0 = Wi,0XXT WT
i,0Vi,0Ri RT

i VT
i,0, (9)

Di,1 = Wi,1XXT WT
i,1Vi,1Ri RT

i VT
i,1, (10)

Di,2 = Wi,1XXT WT
i,1Wi,1Xi X

T
i WT

i,1, (11)

Di,3 = Wi,2XXT WT
i,2Vi,2Xi X

T
i VT

i,2, (12)

Di,4 = Wi,3XXT WT
i,3Wi,3Xi X

T
i WT

i,3. (13)

Then, a multi-head combination architecture is designed to
explore the importance of different task attention layers, which
combines outputs

{
Oi,d

}
d=0,··· ,4 from multiple task attention

architectures. Following the ensemble technique proposed
in the eCCA [8], the multi-head combination layer can be

expressed as

Omulti
i =

4∑
d=0

[
mi,d · sign

{
Oi,d

}
· O2

i,d

]
, (14)

where mi,d denotes the trainable weight of the d-th output of
the task attention architecture for the i-th stimulus.

Compared to the fully connection layer, the proposed
architecture reduces the connection numbers to condense
the trainable parameter number. Furthermore, The trainable
parameter dimensions in the spatial filtering layer, the feature
combination layer, and the multi-head combination layer are
further limited from two aspects. Firstly, inspired by the sCCA,
the parameter dimensions for all i ∈ {1, 2, · · · , I } are set as{

Wi,nw

}
nw=0,1,2,3 and Vi,2 ∈ R1×C , and{

Vi,nw

}
nw=0,1 ∈ R1×H . (15)

Secondly, the commonalities of the spatial filters and the
ensemble weights across stimuli introduced in [8] and [10]
are adopted, which can be expressed as

W1,w = W2,w = · · · = WI,w ∀ w = 0, 1, 2, 3,

V1,v = V2,v = · · · = VI,v ∀ v = 0, 1, 2,

m1,d = m2,d = · · · = m I,d ∀ d = 0, 1, 2, 3, 4. (16)

D. Multi-Head Task Attention Architecture Based SSVEP
Recognition Algorithm

In this study, the multi-head task attention architectures
corresponding to all stimuli are parallel concatenated together
as shown in Fig. 2(b). Moreover, the filter-bank approach that
has been successfully applied in existing prominent SSVEP
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recognition methods is also adopted in this study as shown
in Fig. 2(c). The outputs from sub-bands are regarded as the
spectral information and integrated by

Ofilterbank
i =

G∑
g=1

ugOmulti
i,g , (17)

where Omulti
i,g denotes the output of the g-th sub-band for the

i-th stimulus, ug denotes the weights of the g-th sub-band,
and G denotes the total number of sub-bands. The sub-band
weights present the importance of the spectral information.
In addition, following the eCCA, the weights in the multi-head
combination layers of all sub-bands are limited as the same
values to condense the trainable parameters.

Finally, the softmax layer unifies the classification results
of all stimuli together. The i-th element of the out-
put from the softmax layer is computed as Osoftmax

i =

eOfilterbank
i

/ I∑
k=1

eOfilterbank
k . The stimulus providing the largest

output of the softmax layer is regarded as the recognition
result.

E. Training Process
This study uses the gradient descent to minimize the cate-

gorical cross-entropy loss. The whole training process contains
several iterative epochs. In each epoch, calibration signals
and corresponding labels of all training blocks are integrated
together as pairs of inputs and outputs in one batch to
update trainable parameters. For one pair of input and output,
supposing whole training blocks are applied to construct the
SSVEP templates following (3), the model parameters will
include the information from the input, which easily leads to
the over-fitting issue. To avoid this problem, the computation
of the SSVEP template in the training process for the input and
output pair of the i-th stimulus in the nb-th training block does
not involve the calibration data of the nb-th training block,
which follows

Xi,nb =
1

Nt (Nb − 1)

 Nb∑
j=1

Nt∑
m=1

Xi, j,m −

Nt∑
m=1

Xi,nb,m

 . (18)

For the recognition or testing process, since the new incom-
ing blocks are not included in the training blocks, the
SSVEP templates are still computed by (3). The related codes
are available at https://github.com/pikipity/Compact-Artificial-
Neural-Network-SSVEP.

IV. RESULTS

A. Classification Performance
The classification performance is verified by the leave-one-

block-out cross validation. In all blocks, one block is used
for testing, and remaining blocks are adopted to construct
kernels in the temporal filtering layer and train model param-
eters, which ensures that the training and testing datasets
are from different blocks, and thus avoids using the infor-
mation outside the training dataset to create the recognition
model. The entire evaluation is repeated to test all blocks.

The classification performance is evaluated by the classifi-
cation accuracy and the ITR computed by ITR = 60/T ·{
log2 I + P log2 P + (1 − P) log2

[
(1 − P)/(I − 1)

]}
where

P is the classification accuracy, and T is the total time of each
detection that is equal to the summation of the shifting visual
attention time (0.5s in both datasets), the visual latency (0.14s
in the benchmark dataset and 0.13s in the BETA dataset),
the signal length for the target recognition, and the actual
computational time of each detection. Following [41] and [42],
the EEG signals from 9 selected channels (Pz, PO-z/3/4/5/6,
O-z/1/2) are utilized in this section. In addition, following [11],
the total sub-band number G is set to 5 in this study. The
lower and upper cut-off frequencies of the g-th sub-band are
set to (8 · g)Hz and 90Hz. The classification performance of
the proposed task attention based SSVEP recognition method
is compared with that of four prominent CA-based individ-
ual SSVEP recognition methods, i.e., the sCCA, the eCCA,
the TRCA and the eTRCA, and two prominent DNN-based
SSVEP recognition methods, i.e., the Guney-DNN and the
Conv-CA, which is illustrated in Fig. 3. For each signal length,
six paired t-tests are conducted.

The proposed ANN architecture can deliver the best per-
formance in comparison with all other algorithms in terms
of the accuracy and the ITR in both datasets. It can provide
182.046 bits/min (85.488% accuracy) and 137.309 bits/min
(74.982% accuracy) for the benchmark dataset and the BETA
dataset, respectively. These maximum ITRs are achieved in
0.5s and 0.6s signal lengths for the benchmark dataset and the
BETA dataset, respectively. In the benchmark dataset, when
the calibration data sizes are small (short signal lengths, i.e.,
0.25s and 0.5s), the proposed ANN architecture can signifi-
cantly outperform other methods. In the BETA dataset, due
to lower signal qualities and smaller training block numbers,
the recognition performance of all methods is lower than that
in the benchmark dataset. In this case, the proposed ANN
architecture performs significantly better than other methods
for all signal lengths. Such impressive results under the limited
calibration data size and the unsatisfactory signal quality
provides reassurance about the robustness of our proposed
method. It should be noted that, since this study focuses on
the individual SSVEP recognition, only individual calibration
signals whose signal lengths are same as those of testing
signals are utilized in the training processes for all methods to
achieve fair comparisons. In other words, the calibration data
size in this study is much smaller than that in [6] and [22].
Therefore, the recognition results of the Conv-CA and the
Guney-DNN are much lower than the results presented in [6]
and [22].

B. Trainable Parameter Size
The effect of the trainable parameter number is verified

in this section. Table I compares the trainable parameter
numbers and the maximum average ITRs of the proposed
ANN architecture as well as the prominent CA-based and
DNN-based methods. We can observe that the proposed ANN
architecture needs the smallest trainable parameter number
and can achieve the highest maximum ITR. Compared to the
eTRCA that needs the smallest trainable parameter number
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Fig. 3. Classification performance of the proposed ANN architecture, the prominent CA-based and DNN-based SSVEP recognition methods for
different signal lengths. (a) Classification accuracy for the benchmark dataset. (b) ITR for the benchmark dataset. (c) Classification accuracy for the
BETA dataset. (d) ITR for the BETA dataset.

TABLE I
COMPARISONS OF TRAINABLE PARAMETER NUMBERS AND MAXIMUM

ITRS(C = 9, H = 5, G = 5, AND I = 40)

and provides the best performance in these four CA-based
methods, the proposed ANN architecture reduces the trainable
parameter number by 81.389%, and improves the maximum
ITRs by 7.103% and 16.725% for the benchmark and BETA
datasets, respectively. Compared to the Conv-CA that needs
the smallest trainable parameter number and provides the best
performance in these two DNN-based methods, the proposed
ANN architecture reduces the trainable parameter number by
99.896%, and improves the maximum ITRs by 57.724% and
186.478% for the benchmark and BETA datasets, respectively.

The pre-defined kernels of the temporal filtering layers
introduced in Section III-B and the constrains of other layers
shown in (16) have large contributions on limiting dimensions
of trainable parameters. Fig. 4 illustrates the comparisons of
the proposed ANN architecture with and without limitations
on parameter dimensions, including the pre-defined kernels
in the temporal filtering layers and the constrains in other
layers. When the parameters in all layers are unlimited, the
trainable parameter numbers are 248630, 488030, 723630, and
963030 at the signal lengths of 0.25s, 0.5s, 0.75s, and 1s,

Fig. 4. Comparisons of the proposed ANN architecture with and without
limitations on parameter dimensions.

respectively. When only parameters in the temporal filtering
layer is limited, the trainable parameter numbers are 13030 at
all signal lengths. When parameters in all layers are limited,
the trainable parameter numbers are 335 at all signal lengths.
The benchmark dataset is adopted due to good signal quality
and enough number of training blocks. Two paired t-tests
are conducted in each signal length. The proposed ANN
architecture with the limitations on parameters of all layers
can provide the best recognition performance. Fig. 5 shows the
testing and training accuracies in all training epochs. To show
the performance deterioration when removing limitations on
parameter sizes and the lower limit of performance, the signal
length is set as 0.25s where the recognition accuracy is
low. Although the testing accuracy of the proposed ANN
architecture both with and without the limitations on parameter
dimensions can converge to very large values, the differences
between the training and testing results become large as the
sizes of trainable parameters increase. More results can be
found in Section S.II of the supplementary material.

C. Calibration Data Size
In the individual SSVEP recognition, the calibration data

size normally is determined by the number of calibration
blocks and channel numbers. Effects of these two parameters
on the calibration performance are evaluated in this section.
Because the benchmark dataset contains more blocks, it is
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Fig. 5. Convergences of testing and training accuracies delivered by
the proposed ANN architecture (0.25s signal length for the benchmark
dataset). (a) Sizes of parameters in all layers are limited. (b) Only
sizes of parameters in the temporal filtering layer is limited. (c) Sizes
of parameters in all layers are unlimited.

TABLE II
COMPUTATIONAL TIME OF THE PROPOSED ANN ARCHITECTURE AND

THE PROMINENT CA-BASED METHODS FOR THE RECOGNITION

PROCESS OF ONE BLOCK SIGNALS IN THE BENCHMARK

DATASET(C = 9, H = 5, G = 5, AND I = 40)

Fig. 6. Classification accuracy of the proposed ANN architecture for dif-
ferent numbers of training blocks (0.5s signal length for the benchmark
dataset).

adopted to evaluate the effects of different training block
numbers.

Fig. 6 illustrates the classification accuracy of the pro-
posed ANN architecture for different training block numbers.
To show the performance improvement as the number of
training blocks increases and the upper limit of performance,
the window length is set as 0.5s where the proposed ANN
architecture can achieve the maximum ITR as shown in Fig. 3.
Three paired t-tests are conducted to analyze the performance
differences between different numbers of training blocks. All
p-values are less than 0.001/3, indicating that the differences
of the recognition performance between different numbers of
training blocks are significant. More results can be found in
Section S.III of the supplementary material.

Fig. 7 illustrates the classification accuracy of the pro-
posed ANN architecture and the prominent CA-based methods
for different channel numbers. The recognition performance
of the proposed ANN architecture and the prominent three
CA-based methods, i.e., the eCCA, the TRCA, and the

eTRCA, is evaluated for 9 (Pz, PO-z/3/4/5/6, O-z/1/2),
19 (P-z/1/2/3/4/5/6/7/8, PO-z/3/4/5/6/7/8, O-z/1/2), and 32 (all
channels in occipital, parietal, and central-parietal regions)
channels. To show the robustness of the proposed method
and the lower limit of performance, the window length is set
as 0.25s and 0.4s for the benchmark dataset and the BETA
dataset respectively, where the recognition accuracies of all
methods are low. For each method, two paired t-tests are
conducted to analyze the performance differences between
different EEG channel numbers. It can be seen that, as the
EEG channel number increases, the recognition accuracies
of the TRCA and the eCCA have the significant deduction,
especially for the eCCA. The performance of the eTRCA and
the proposed ANN could be significantly improved when the
channel number increases. For each channel number, three
paired t-tests are conducted. Each t-test evaluates the perfor-
mance difference between the proposed ANN architecture and
one of two CA-based methods. No matter how many EEG
channel number, the proposed ANN architecture always can
significantly outperform other three methods. More results can
be found in Section S.IV of the supplementary material.

V. DISCUSSIONS
A. Compact ANN and Less Calibration

One key contribution of this study is that the prior knowl-
edge of the SSVEP task is integrated to the attention neural
network, which significantly reduce the trainable parameters
to avoid the over-fitting issue and leads to the impressive
recognition performance as shown in Fig. 3 and Table I.
More specifically, the reduction of the trainable parameters
is mainly due to 2 designs: 1) According to the operations
in conventional spatial filtering algorithms, the connection
numbers between layers are limited; 2) Inspired by the SSVEP
reference/template signals and the commonality of spatial fil-
ters across stimuli, the constraints are designed to condense the
dimensions of trainable parameters. Removing any limitations
in these two designs exacerbates the over-fitting issue, which
reduces the generalization ability of the proposed model, and
thus leads to large gaps between the training and testing
accuracy as shown in Fig. 5. The over-fitting issue is the
key reason of the performance deterioration when the number
of trainable parameters increases illustrated in Fig. 4. These
results suggest that condensing the ANN model size can
effectively avoid the over-fitting and improve the recognition
performance under the limited calibration data in the individual
SSVEP recognition.

Although the proposed method requires much less cali-
bration data than other ANN methods, the calibration data
size still has the large effect on the recognition performance.
Fig. 3 shows that, although the proposed ANN architecture can
significantly outperform all of other prominent CA-based and
DNN-based algorithms in the BETA dataset, the performance
in the BETA dataset is still worse than that in the benchmark
dataset. One of key reasons is the small number of calibration
blocks in the BETA dataset. Fig. 6 shows that, as the number
of calibration blocks decreases, the classification performance
also decreases significantly. Therefore, more calibration blocks
are still recommended for the proposed ANN architecture to
achieve better recognition performance.
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Fig. 7. Classification performance of the proposed ANN architecture
and the prominent CA-based SSVEP recognition methods for different
channel numbers. (a) Classification accuracy of 0.25s signal length for
the benchmark dataset. (b) Classification accuracy of 0.4s signal length
for the BETA dataset.

B. End-to-End and Global Optimization

Besides the compact structure, another key contribution of
this study is that the advantages of the ANNs, i.e., the end-to-
end and global optimization, is introduced to the individual
SSVEP recognition. Compared to the conventional spatial
filtering methods, the proposed method considers the variances
within and between classes, and avoids the error accumulation,
resulting in more optimal spatial filters and better performance
as shown in Fig. 7. Because the signal qualities in different
channels may be varied, superior calibration performance nor-
mally requires the suitable channel selection. As illustrated in
Fig. 7, the CA-based methods calculate spatial filters without
considering other model parameters and/or only considers
the variances within classes, which obstruct the further per-
formance improvements when the number of EEG channels
increases. Nevertheless, owing to the end-to-end and global
optimization, the proposed method can effectively avoid this
obstacle. These results suggest that introducing the benefits
of the ANN techniques is promising for overcoming the over
channel selection issue in the EEG analysis. More discussions
related to the advantages of fine-tuning sub-band weights and
weights in the multi-head attention layer are illustrated in
Sections S.V and S.VI of the supplementary material.

The global optimization of the proposed ANN architecture
is achieved by the gradient descent, which requires lots of
epochs to iteratively evaluate the loss function on all calibra-
tion signals in the training blocks. Compared to the training
processes of the conventional spatial filtering methods that
only solve the GEP shown in (1), the computational cost
of the training process for the proposed method is much
larger. However, after the entire training process, the SSVEP
recognition process of the proposed ANN architecture is only
based on the simple matrix operations, and thus does not need
large computational cost. Therefore, the computational time
of the proposed ANN architecture is much faster than that
of some conventional spatial filtering methods that require to
calculate the spatial filters of the new incoming EEG signals,
such as the sCCA and the eCCA, as illustrated in Table II.
On the other hand, our method achieves comparable running
time with (e)TRCA, but it can provide significantly better
accuracies and ITRs as shown in Fig. 3. In addition, since the
trainable parameter number of the proposed ANN architecture
is much smaller than the conventional spatial filtering methods
as shown in Table I, the memory cost for storing the model
of the proposed recognition is much smaller than that of the

conventional spatial filtering methods. Moreover, due to the
small size of the recognition model, the computational cost
of the proposed method is much smaller than that of the
DNN-based methods.

C. Limitations
Although the proposed ANN architecture can deliver the

promising individual SSVEP recognition performance under
the limited calibration data size, it is only at its infancy.
There are still some practical problems. Firstly, kernels in the
temporal filtering layer are pre-defined in this study, which
are SSVEP reference and template signals. However, they are
either too simple to present real EEG signals or easily affected
by the external interference. According to the DNN-based
SSVEP recognition methods [6], [22], [23], the recognition
performance may be further improved by using calibration
data to fine-tune the kernels in the temporal filtering layer.
The prior knowledge of SSVEP signals, such as the dynamic
model of SSVEP signals proposed in [43], and the transfer
learning techniques of SSVEP signals introduced in [14], [26],
[27], [28], and [29], may be helpful for designing the initial
values and the constraints of optimizing kernels in the temporal
filtering layer under the limited calibration data size. Secondly,
most layers in the proposed ANN architecture are inspired by
the unified framework of the spatial filtering algorithms and
thus are limited by the linear operations. Incorporating more
non-linear operations may be conducive to analyze nonlinear
features of SSVEP signals mentioned in [44] and further
improve the performance. Thirdly, the proposed ANN archi-
tecture does not adopt the new coming data to adjust trainable
parameters, and thus cannot achieve the lifelong improve-
ment. Therefore, it still requires enough calibration blocks as
mentioned in Section IV-C. By utilizing the online adaption
techniques such as the online adaptive CCA proposed in [45],
the required calibration data size would be further reduced.

VI. CONCLUSION
This study proposes a task attention-based ANN architecture

for the individual SSVEP recognition. The proposed task
attention layer integrates the conventional spatial filtering
algorithms into the ANN architecture. The conventional spatial
filtering algorithms provide the prior knowledge of the SSVEP
tasks, including the SSVEP reference/template signals, the
SSVEP decoding schemes, and the common knowledge shared
across stimuli. By incorporating the prior knowledge, the
trainable parameter number in the ANN structure can be
condensed to reduce the over-fitting effects under the limited
calibration data size. Then, the individual SSVEP recognition
can be benefited by the end-to-end and global optimization
provided by the ANN technique. Simulation results on two
public datasets show that, compared to prominent CA-based
and DNN-based methods, the proposed ANN architecture
can use the smallest trainable parameter number to provide
the best performance in the individual SSVEP recognition.
This research provides a promising future of using the prior
knowledge to eliminate the number of redundant parameters
in the SSVEP recognition models, and thereby introducing the
benefits of the ANN techniques to the SSVEP analysis with
less calibration.
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